GNU/LInux

THE MAN-PAGES BOOK

Maintainers:

Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)
Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 -1.5)

intro(1) General Commands Manual intro(1)

NAME
intro — introduction to user commands

DESCRIPTION
Section 1 of the manual describes user commands and tools, for example, file manipulation tools,
shells, compilers, web browsers, file and image viewers and editors, and so on.

NOTES
Linux is a flavor of UNIX, and as a first approximation all user commands under UNIX work precisely
the same under Linux (and FreeBSD and lots of other UNIX-like systems).

Under Linux, there are GUIs (graphical user interfaces), where you can point and click and drag, and
hopefully get work done without first reading lots of documentation. The traditional UNIX environ-
ment is a CLI (command line interface), where you type commands to tell the computer what to do.
That is faster and more powerful, but requires finding out what the commands are. Below a bare mini-
mum, to get started.

Login
In order to start working, you probably first have to open a session by giving your username and pass-
word. The program login(1) now starts a shell (command interpreter) for you. In case of a graphical
login, you get a screen with menus or icons and a mouse click will start a shell in a window. See also
xterm(1)

The shell
One types commands to the shell, the command interpreter. It is not built-in, but is just a program and
you can change your shell. Everybody has their own favorite one. The standard one is called sh. See
also ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1), zsh(1)

A session might go like:

knuth login: aeb
Password: ******x*
$ date
Tue Aug 6 23:50:44 CEST 2002
$ cal
August 2002
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

$ Is

bin tel

$ Is -1

total 2

drwxrwxr-x 2 aeb 1024 Aug
—rw—rw—-r—-— 1 aeb 37 Aug
$ cat tel

maja 0501-1136285

peter 0136-7399214

$ cp tel tel2

$ Is -1

total 3

drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin

-rw-r--r-— 1 aeb 37 Aug 6 23:52 tel

-rw-r--r-— 1 aeb 37 Aug 6 23:53 tel2
$ mv tel tell

$ Is -1

total 3

3:51 bin
3:52 tel

(o))}
N N

Linux man-pages 6.7 2023-10-31 2

intro(1)

General Commands Manual intro(1)
drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
—rw—r——r—-— 1 aeb 37 Aug 6 23:52 tell
—rw—r——r—-— 1 aeb 37 Aug 6 23:53 tel2
$ diff tell tel2
$ rm tell

$ grep maja tel2
maja 0501-1136285
$

Here typing Control-D ended the session.

The $ here was the command prompt—it is the shell’s way of indicating that it is ready for the next
command. The prompt can be customized in lots of ways, and one might include stuff like username,
machine name, current directory, time, and so on. An assignment PS1="What next, master? " would
change the prompt as indicated.

We see that there are commands date (that gives date and time), and cal (that gives a calendar).

The command Is lists the contents of the current directory—it tells you what files you have. With a —I
option it gives a long listing, that includes the owner and size and date of the file, and the permissions
people have for reading and/or changing the file. For example, the file "tel" here is 37 bytes long,
owned by aeb and the owner can read and write it, others can only read it. Owner and permissions can
be changed by the commands chown and chmod.

The command cat will show the contents of a file. (The name is from "concatenate and print": all files
given as parameters are concatenated and sent to “standard output” (see stdout(3)), here the terminal
screen.)

The command cp (from "copy") will copy a file.
The command mv (from "move™), on the other hand, only renames it.

The command diff lists the differences between two files. Here there was no output because there were
no differences.

The command rm (from "remove") deletes the file, and be careful! it is gone. No wastepaper basket or
anything. Deleted means lost.

The command grep (from "g/re/p") finds occurrences of a string in one or more files. Here it finds
Maja’s telephone number.

Pathnames and the current directory

Files live in a large tree, the file hierarchy. Each has a pathname describing the path from the root of
the tree (which is called /) to the file. For example, such a full pathname might be /home/aeb/tel. Al-
ways using full pathnames would be inconvenient, and the name of a file in the current directory may
be abbreviated by giving only the last component. That is why /home/aeb/tel can be abbreviated to tel
when the current directory is /home/aeb.

The command pwd prints the current directory.
The command cd changes the current directory.

Try alternatively cd and pwd commands and explore cd usage: "cd", "cd .", "cd ..", "cd /", and "cd ~".

Directories

The command mkdir makes a new directory.
The command rmdir removes a directory if it is empty, and complains otherwise.

The command find (with a rather baroque syntax) will find files with given name or other properties.
For example, "find . —name tel" would find the file tel starting in the present directory (which is called
.). And "find / -name tel" would do the same, but starting at the root of the tree. Large searches on a
multi-GB disk will be time-consuming, and it may be better to use locate(1)

Disks and filesystems

The command mount will attach the filesystem found on some disk (or floppy, or CDROM or so) to the
big filesystem hierarchy. And umount detaches it again. The command df will tell you how much of
your disk is still free.

Linux man-pages 6.7 2023-10-31 3

intro(1) General Commands Manual intro(1)

Processes
On a UNIX system many user and system processes run simultaneously. The one you are talking to
runs in the foreground, the others in the background. The command ps will show you which
processes are active and what numbers these processes have. The command kill allows you to get rid
of them. Without option this is a friendly request: please go away. And "kill —=9" followed by the num-
ber of the process is an immediate kill. Foreground processes can often be killed by typing Control-C.

Getting information
There are thousands of commands, each with many options. Traditionally commands are documented
on man pages, (like this one), so that the command "man kill" will document the use of the command
"kill" (and "man man" document the command "man"). The program man sends the text through some
pager, usually less. Hit the space bar to get the next page, hit g to quit.

In documentation it is customary to refer to man pages by giving the name and section number, as in
man(1)Man pages are terse, and allow you to find quickly some forgotten detail. For newcomers an in-
troductory text with more examples and explanations is useful.

A lot of GNU/FSF software is provided with info files. Type "info info" for an introduction on the use
of the program info.

Special topics are often treated in HOWTOs. Look in /usr/share/doc/howto/en and use a browser if
you find HTML files there.

SEE ALSO
ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1), locate(1), login(1), man(1), xterm(1), zsh(1), wait(2),
stdout(3), man-pages(7), standards(7)

Linux man-pages 6.7 2023-10-31 4

getent(1) General Commands Manual getent(1)

NAME

getent — get entries from Name Service Switch libraries

SYNOPSIS

getent [option]... database key...

DESCRIPTION

The getent command displays entries from databases supported by the Name Service Switch libraries,
which are configured in /etc/nsswitch.conf. If one or more key arguments are provided, then only the
entries that match the supplied keys will be displayed. Otherwise, if no key is provided, all entries will
be displayed (unless the database does not support enumeration).

The database may be any of those supported by the GNU C Library, listed below:

ahosts When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to enumerate the
hosts database. This is identical to using hosts(5). When one or more key arguments are pro-
vided, pass each key in succession to getaddrinfo(3) with the address family AF_UNSPEC,
enumerating each socket address structure returned.

ahostsv4
Same as ahosts, but use the address family AF_INET.

ahostsv6
Same as ahosts, but use the address family AF_INET6. The call to getaddrinfo(3) in this
case includes the Al_VAMAPPED flag.

aliases When no key is provided, use setaliasent(3), getaliasent(3), and endaliasent(3) to enumerate
the aliases database. When one or more key arguments are provided, pass each key in succes-
sion to getaliasbyname(3) and display the result.

ethers When one or more key arguments are provided, pass each key in succession to ether_aton(3)
and ether_hostton(3) until a result is obtained, and display the result. Enumeration is not sup-
ported on ethers, so a key must be provided.

group When no key is provided, use setgrent(3), getgrent(3), and endgrent(3) to enumerate the group
database. When one or more key arguments are provided, pass each numeric key to get-
grgid(3) and each nonnumeric key to getgrnam(3) and display the result.

gshadow
When no key is provided, use setsgent(3), getsgent(3), and endsgent(3) to enumerate the
gshadow database. When one or more key arguments are provided, pass each key in succes-
sion to getsgnam(3) and display the result.

hosts ~ When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to enumerate the
hosts database. When one or more key arguments are provided, pass each key to gethost-
byaddr(3) or gethostbyname2(3), depending on whether a call to inet_pton(3) indicates that
the key is an IPv6 or IPv4 address or not, and display the result.

initgroups
When one or more key arguments are provided, pass each key in succession to getgrouplist(3)
and display the result. Enumeration is not supported on initgroups, so a key must be pro-
vided.

netgroup
When one key is provided, pass the key to setnetgrent(3) and, using getnetgrent(3) display the
resulting string triple (hostname, username, domainname). Alternatively, three keys may be
provided, which are interpreted as the hostname, username, and domainname to match to a
netgroup name via innetgr(3). Enumeration is not supported on netgroup, so either one or
three keys must be provided.

networks
When no key is provided, use setnetent(3), getnetent(3), and endnetent(3) to enumerate the
networks database. When one or more key arguments are provided, pass each numeric key to
getnetbyaddr(3) and each nonnumeric key to getnetbyname(3) and display the result.

passwd
When no key is provided, use setpwent(3), getpwent(3), and endpwent(3) to enumerate the
passwd database. When one or more key arguments are provided, pass each numeric key to

Linux man-pages 6.7 2023-11-01 1

getent(1) General Commands Manual getent(1)

getpwuid(3) and each nonnumeric key to getpwnam(3) and display the result.

protocols
When no key is provided, use setprotoent(3), getprotoent(3), and endprotoent(3) to enumerate
the protocols database. When one or more key arguments are provided, pass each numeric key
to getprotobynumber(3) and each nonnumeric key to getprotobyname(3) and display the result.

rpc When no key is provided, use setrpcent(3), getrpcent(3), and endrpcent(3) to enumerate the
rpc database. When one or more key arguments are provided, pass each numeric key to getr-
pcbynumber(3) and each nonnumeric key to getrpcbyname(3) and display the result.

services
When no key is provided, use setservent(3), getservent(3), and endservent(3) to enumerate the
services database. When one or more key arguments are provided, pass each numeric key to
getservbynumber (3) and each nonnumeric key to getservbyname(3) and display the result.

shadow
When no key is provided, use setspent(3), getspent(3), and endspent(3) to enumerate the
shadow database. When one or more key arguments are provided, pass each key in succession
to getspnam(3) and display the result.

OPTIONS
——service service
—S service
Override all databases with the specified service. (Since glibc 2.2.5.)

—=-service database:service

—s database:service
Override only specified databases with the specified service. The option may be used multiple
times, but only the last service for each database will be used. (Since glibc 2.4.)

—-no-idn
=i Disables IDN encoding in lookups for ahosts/getaddrinfo(3) (Since glibc-2.13.)

——help
=? Print a usage summary and exit.

—-usage
Print a short usage summary and exit.

—=version
-V Print the version number, license, and disclaimer of warranty for getent.

EXIT STATUS
One of the following exit values can be returned by getent:

0 Command completed successfully.

1 Missing arguments, or database unknown.

2 One or more supplied key could not be found in the database.
3 Enumeration not supported on this database.

SEE ALSO
nsswitch.conf(5)

Linux man-pages 6.7 2023-11-01 2

iconv(1) General Commands Manual iconv(1)

NAME
iconv — convert text from one character encoding to another

SYNOPSIS
iconv [options] [-f from-encoding] [t to-encoding] [inputfile]...

DESCRIPTION
The iconv program reads in text in one encoding and outputs the text in another encoding. If no input
files are given, or if it is given as a dash (=), iconv reads from standard input. If no output file is given,
iconv writes to standard output.

If no from-encoding is given, the default is derived from the current locale’s character encoding. If no
to-encoding is given, the default is derived from the current locale’s character encoding.

OPTIONS
——from-code= from-encoding
—f from-encoding
Use from-encoding for input characters.

——to—-code=to-encoding
-t to-encoding
Use to-encoding for output characters.

If the string /IGNORE is appended to to-encoding, characters that cannot be converted are
discarded and an error is printed after conversion.

If the string //TRANSLIT is appended to to-encoding, characters being converted are translit-
erated when needed and possible. This means that when a character cannot be represented in
the target character set, it can be approximated through one or several similar looking charac-
ters. Characters that are outside of the target character set and cannot be transliterated are re-
placed with a question mark (?) in the output.

- List all known character set encodings.

—-C Silently discard characters that cannot be converted instead of terminating when encountering
such characters.

——output=outputfile
-0 outputfile
Use outputfile for output.

—-silent
-s This option is ignored,; it is provided only for compatibility.

—-verbose
Print progress information on standard error when processing multiple files.

——help
=? Print a usage summary and exit.

—-usage
Print a short usage summary and exit.

—=version
-V Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, NONZEro on errors.

ENVIRONMENT
Internally, the iconv program uses the iconv(3) function which in turn uses gconv modules (dynami-
cally loaded shared libraries) to convert to and from a character set. Before calling iconv(3), the iconv
program must first allocate a conversion descriptor using iconv_open(3). The operation of the latter
function is influenced by the setting of the GCONV_PATH environment variable:

« If GCONV_PATH is not set, iconv_open(3) loads the system gconv module configuration cache
file created by iconvconfig(8) and then, based on the configuration, loads the gconv modules needed
to perform the conversion. If the system gconv module configuration cache file is not available then

Linux man-pages 6.7 2024-01-28 1

iconv(1) General Commands Manual iconv(1)

the system gconv module configuration file is used.

« If GCONV_PATH is defined (as a colon-separated list of pathnames), the system gconv module
configuration cache is not used. Instead, iconv_open(3) first tries to load the configuration files by
searching the directories in GCONV_PATH in order, followed by the system default gconv module
configuration file. If a directory does not contain a gconv module configuration file, any gconv
modules that it may contain are ignored. If a directory contains a gconv module configuration file
and it is determined that a module needed for this conversion is available in the directory, then the
needed module is loaded from that directory, the order being such that the first suitable module
found in GCONV_PATH is used. This allows users to use custom modules and even replace sys-
tem-provided modules by providing such modules in GCONV_PATH directories.

FILES
Jusr/lib/gconv
Usual default gconv module path.

Jusr/lib/gconv/gconv—modules
Usual system default gconv module configuration file.

Jusr/lib/gconv/gconv—modules.cache
Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories with the path prefix
Jusr/lib64.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
Convert text from the ISO/IEC 8859-15 character encoding to UTF-8:

$ iconv —-f 1S0-8859-15 -t UTF-8 < input.txt > output.txt
The next example converts from UTF-8 to ASCI|, transliterating when possible:

$ echo abc B a € abg | iconv —f UTF-8 -t ASCII//TRANSLIT
abc ss ? EUR abc

SEE ALSO
locale(1), uconv(1), iconv(3), nl_langinfo(3), charsets(7), iconvconfig(8)

Linux man-pages 6.7 2024-01-28 2

ldd (1) General Commands Manual ldd (1)
NAME
Idd — print shared object dependencies
SYNOPSIS
Idd [option]... file...
DESCRIPTION
Idd prints the shared objects (shared libraries) required by each program or shared object specified on
the command line. An example of its use and output is the following:
$ Idd /bin/ls
linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /1ib64/libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /l1ib64/libc.so.6 (0x00007f87e4e92000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /1ib64/1ibdl._so.2 (0x00007f87e4ale000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00005574bf12e000)
libattr.so.1 => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /1ib64/libpthread.so.0 (0x00007f87e45fa000)
In the wusual case, Idd invokes the standard dynamic linker (see 1d.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dynamic linker to
inspect the program’s dynamic dependencies, and find (according to the rules described in 1d.so(8)) and
load the objects that satisfy those dependencies. For each dependency, Idd displays the location of the
matching object and the (hexadecimal) address at which it is loaded. (The linux—vdso and ld—linux
shared dependencies are special; see vdso(7) and 1d.so(8).)
Security
Be aware that in some circumstances (e.g., where the program specifies an ELF interpreter other than
Id—linux.so), some versions of ldd may attempt to obtain the dependency information by attempting to
directly execute the program, which may lead to the execution of whatever code is defined in the pro-
gram’s ELF interpreter, and perhaps to execution of the program itself. (Before glibc 2.27, the up-
stream ldd implementation did this for example, although most distributions provided a modified ver-
sion that did not.)
Thus, you should never employ Idd on an untrusted executable, since this may result in the execution
of arbitrary code. A safer alternative when dealing with untrusted executables is:
$ objdump -p /path/to/program | grep NEEDED
Note, however, that this alternative shows only the direct dependencies of the executable, while Idd
shows the entire dependency tree of the executable.
OPTIONS
—=version
Print the version number of Idd.
—-verbose
-V Print all information, including, for example, symbol versioning information.
—=unused
-u Print unused direct dependencies. (Since glibc 2.3.4.)
—-data-relocs
-d Perform relocations and report any missing objects (ELF only).
——function-relocs
-r Perform relocations for both data objects and functions, and report any missing objects or
functions (ELF only).
——help Usage information.
BUGS

Idd does not work on a.out shared libraries.

Idd does not work with some extremely old a.out programs which were built before 1dd support was
added to the compiler releases. If you use Idd on one of these programs, the program will attempt to

Linux man-pages 6.7 2023-10-31 1

ldd (1) General Commands Manual ldd (1)

run with argc = 0 and the results will be unpredictable.

SEE ALSO
pldd(1), sprof(1), Id.so(8), Idconfig(8)

Linux man-pages 6.7 2023-10-31 2

locale(1) General Commands Manual locale(1)

NAME
locale — get locale-specific information

SYNOPSIS
locale [option]
locale [option] -a
locale [option] -m
locale [option] name...

DESCRIPTION
The locale command displays information about the current locale, or all locales, on standard output.

When invoked without arguments, locale displays the current locale settings for each locale category
(see locale(5)), based on the settings of the environment variables that control the locale (see locale(7)).
Values for variables set in the environment are printed without double quotes, implied values are
printed with double quotes.

If either the —a or the —m option (or one of their long-format equivalents) is specified, the behavior is
as follows:

—-all-locales
-a Display a list of all available locales. The —v option causes the LC_IDENTIFICATION
metadata about each locale to be included in the output.

——charmaps
-m Display the available charmaps (character set description files). To display the current charac-
ter set for the locale, use locale —c charmap.

The locale command can also be provided with one or more arguments, which are the names of locale
keywords (for example, date_fmt, ctype—class—names, yesexpr, or decimal_point) or locale categories
(for example, LC_CTYPE or LC_TIME). For each argument, the following is displayed:

» For alocale keyword, the value of that keyword to be displayed.
» For alocale category, the values of all keywords in that category are displayed.
When arguments are supplied, the following options are meaningful:

—-category—-name
—-C For a category name argument, write the name of the locale category on a separate line pre-
ceding the list of keyword values for that category.

For a keyword name argument, write the name of the locale category for this keyword on a
separate line preceding the keyword value.

This option improves readability when multiple name arguments are specified. It can be com-
bined with the —k option.

——keyword—name
-k For each keyword whose value is being displayed, include also the name of that keyword, so
that the output has the format:

keyword="value"
The locale command also knows about the following options:

—-verbose
-V Display additional information for some command-line option and argument combinations.

——help
=? Display a summary of command-line options and arguments and exit.

—-usage
Display a short usage message and exit.

—=version
-V Display the program version and exit.

FILES

Linux man-pages 6.7 2023-10-31 1

locale(1) General Commands Manual locale(1)

lusr/lib/locale/locale—archive
Usual default locale archive location.

/usr/share/il8n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
$ locale
LANG=en_US_.UTF-8
LC _CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC COLLATE="en_US.UTF-8"
LC_MONETARY="'en_US.UTF-8"
LC_MESSAGES="‘en_US.UTF-8"
LC PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="‘en_US.UTF-8"
LC _IDENTIFICATION="en_US.UTF-8"
LC_ALL=

$ locale date_fmt
%a %b %e %H:%M:%S %Z %Y

$ locale -k date_fmt
date fmt=""%a %b %e %H:%M:%S %Z %Y"

$ locale -ck date_fmt
LC_TIME
date fmt=""%a %b %e %H:%M:%S %Z %Y"

$ locale LC_TELEPHONE
+%c (%a) %l

a) %l

11

1

UTF-8

$ locale -k LC_TELEPHONE
tel_int_fmt="+%c (%a) %I"
tel_dom_fmt=""(%a) %I"
int_select=""11"
int_prefix="1"
telephone-codeset="UTF-8"

The following example compiles a custom locale from the ./wrk directory with the localedef(1) utility
under the $HOME/.locale directory, then tests the result with the date(1) command, and then sets the
environment variables LOCPATH and LANG in the shell profile file so that the custom locale will be
used in the subsequent user sessions:

$ mkdir —-p $HOME/.locale

$ 118NPATH=./wrk/ localedef -f UTF-8 —i fi_SE $HOME/.locale/fi_SE.UTF-8
$ LOCPATH=$HOME/.locale LC_ALL=Fi_SE.UTF-8 date

$ echo "export LOCPATH=\$HOME/.locale'" >> $HOME/.bashrc

Linux man-pages 6.7 2023-10-31 2

locale(1) General Commands Manual locale(1)

$ echo "export LANG=Fi_SE.UTF-8" >> $HOME/.bashrc

SEE ALSO
localedef(1), charmap(5), locale(5), locale(7)

Linux man-pages 6.7 2023-10-31 3

localedef (1) General Commands Manual localedef (1)

NAME
localedef — compile locale definition files

SYNOPSIS
localedef [options] outputpath

localedef ——add-to—archive [options] compiledpath
localedef ——delete—from—archive [options] localename ...
localedef ——list—archive [options]

localedef ——help

localedef ——usage

localedef ——version

DESCRIPTION
The localedef program reads the indicated charmap and input files, compiles them to a binary form
quickly usable by the locale functions in the C library (setlocale(3), localeconv(3), etc.), and places the
output in outputpath.

The outputpath argument is interpreted as follows:

« If outputpath contains a slash character (°/’), it is interpreted as the name of the directory where the
output definitions are to be stored. In this case, there is a separate output file for each locale cate-
gory (LC_TIME, LC_NUMERIC, and so on).

« If the ——no-archive option is used, outputpath is the name of a subdirectory in /usr/lib/locale
where per-category compiled files are placed.

« Otherwise, outputpath is the name of a locale and the compiled locale data is added to the archive
file /usr/lib/locale/locale—archive. A locale archive is a memory-mapped file which contains all
the system-provided locales; it is used by all localized programs when the environment variable
LOCPATH is not set.

In any case, localedef aborts if the directory in which it tries to write locale files has not already been
created.

If no charmapfile is given, the value ANSI_X3.4—1968 (for ASCII) is used by default. If no inputfile is
given, or if it is given as a dash (=), localedef reads from standard input.

OPTIONS
Operation-selection options
A few options direct localedef to do something other than compile locale definitions. Only one of
these options should be used at a time.

—-add-to—-archive
Add the compiledpath directories to the locale archive file. The directories should have been
created by previous runs of localedef, using --no-archive.

——delete—from—archive
Delete the named locales from the locale archive file.

——list—archive
List the locales contained in the locale archive file.

Other options
Some of the following options are sensible only for certain operations; generally, it should be self-evi-
dent which ones. Notice that —f and —c are reversed from what you might expect; that is, —f is not the
same as --force.

Linux man-pages 6.7 2023-10-31 1

localedef (1) General Commands Manual localedef (1)

—f charmapfile, ——charmap=charmapfile
Specify the file that defines the character set that is used by the input file. If charmapfile con-
tains a slash character (’/’), it is interpreted as the name of the character map. Otherwise, the
file is sought in the current directory and the default directory for character maps. If the envi-
ronment variable 118NPATH is set, $I118NPATH/charmaps/ and $I18NPATH/ are also
searched after the current directory. The default directory for character maps is printed by lo-
caledef --help.

=i inputfile, ——inputfile=inputfile
Specify the locale definition file to compile. The file is sought in the current directory and the
default directory for locale definition files. If the environment variable 118NPATH is set,
$118NPATH/locales/ and $118NPATH are also searched after the current directory. The de-
fault directory for locale definition files is printed by localedef --help.

—u repertoirefile, ——repertoire—map=repertoirefile
Read mappings from symbolic names to Unicode code points from repertoirefile. If reper-
toirefile contains a slash character (’/°), it is interpreted as the pathname of the repertoire map.
Otherwise, the file is sought in the current directory and the default directory for repertoire
maps. |If the environment variable I118NPATH is set, $I118NPATH/repertoiremaps/ and
$I118NPATH are also searched after the current directory. The default directory for repertoire
maps is printed by localedef --help.

—A aliasfile, ——alias—file=aliasfile
Use aliasfile to look up aliases for locale names. There is no default aliases file.

——force
—-C Write the output files even if warnings were generated about the input file.

—-verbose
-V Generate extra warnings about errors that are normally ignored.

—-big—-endian
Generate big-endian output.

—-little—endian
Generate little-endian output.

—-no-archive
Do not use the locale archive file, instead create outputpath as a subdirectory in the same di-
rectory as the locale archive file, and create separate output files for locale categories in it.
This is helpful to prevent system locale archive updates from overwriting custom locales cre-
ated with localedef.

——no-hard-links
Do not create hard links between installed locales.

——no-warnings=warnings
Comma-separated list of warnings to disable. Supported warnings are ascii and intcurrsym.

——posix
Conform strictly to POSIX. Implies --verbose. This option currently has no other effect.
POSIX conformance is assumed if the environment variable POSIXLY _CORRECT is set.

——prefix=pathname
Set the prefix to be prepended to the full archive pathname. By default, the prefix is empty.
Setting the prefix to foo, the archive would be placed in foo/usr/lib/locale/locale—archive.

——quiet
Suppress all notifications and warnings, and report only fatal errors.
—-replace
Replace a locale in the locale archive file. Without this option, if the locale is in the archive
file already, an error occurs.
——warnings=warnings
Comma-separated list of warnings to enable. Supported warnings are ascii and intcurrsym.

Linux man-pages 6.7 2023-10-31 2

localedef (1) General Commands Manual localedef (1)

——help
=? Print a usage summary and exit. Also prints the default paths used by localedef.

—-usage
Print a short usage summary and exit.

—=version
-V Print the version number, license, and disclaimer of warranty for localedef.

EXIT STATUS
One of the following exit values can be returned by localedef:

0 Command completed successfully.
1 Warnings or errors occurred, output files were written.
4 Errors encountered, no output created.

ENVIRONMENT
POSIXLY_CORRECT
The ——posix flag is assumed if this environment variable is set.

118NPATH
A colon-separated list of search directories for files.

FILES
/usr/share/il8n/charmaps
Usual default character map path.

/usr/share/il8n/locales
Usual default path for locale definition files.

Jusr/share/il8n/repertoiremaps
Usual default repertoire map path.

lusr/lib/locale/locale—archive
Usual default locale archive location.

{usr/lib/locale
Usual default path for compiled individual locale data files.

outputpath/LC_ADDRESS
An output file that contains information about formatting of addresses and geography-related
items.

outputpath/LC_COLLATE
An output file that contains information about the rules for comparing strings.

outputpath/LC_CTYPE
An output file that contains information about character classes.

outputpath/LC_IDENTIFICATION
An output file that contains metadata about the locale.

outputpath/LC_MEASUREMENT
An output file that contains information about locale measurements (metric versus US custom-
ary).

outputpath/LC_MESSAGES/SYS_LC_MESSAGES

An output file that contains information about the language messages should be printed in, and
what an affirmative or negative answer looks like.

outputpath/LC_MONETARY
An output file that contains information about formatting of monetary values.

outputpath/LC_NAME
An output file that contains information about salutations for persons.

outputpath/LC_NUMERIC
An output file that contains information about formatting of nonmonetary numeric values.

Linux man-pages 6.7 2023-10-31 3

localedef (1) General Commands Manual localedef (1)

outputpath/LC_PAPER
An output file that contains information about settings related to standard paper size.

outputpath/LC_TELEPHONE
An output file that contains information about formats to be used with telephone services.

outputpath/LC_TIME
An output file that contains information about formatting of data and time values.

STANDARDS
POSIX.1-2008.

EXAMPLES
Compile the locale files for Finnish in the UTF-8 character set and add it to the default locale archive
with the name fi_FIL.LUTF-8:

localedef -f UTF-8 —-i fi_FI fi_FI._UTF-8

The next example does the same thing, but generates files into the fi_FI.UTF—8 directory which can
then be used by programs when the environment variable LOCPATH is set to the current directory
(note that the last argument must contain a slash):

localedef -f UTF-8 —-i fi_FI ./fi_FI_UTF-8

SEE ALSO
locale(1), charmap(5), locale(5), repertoiremap(5), locale(7)

Linux man-pages 6.7 2023-10-31 4

memusage(1) General Commands Manual memusage(1)

NAME

memusage — profile memory usage of a program
SYNOPSIS

memusage [option]... program [programoption]...
DESCRIPTION

memusage is a bash script which profiles memory usage of the program, program. It preloads the lib-
memusage.so library into the caller’s environment (via the LD_PRELOAD environment variable; see
Id.so(8)). The libmemusage.so library traces memory allocation by intercepting calls to malloc(3),
calloc(3), free(3), and realloc(3); optionally, calls to mmap(2), mremap(2), and munmap(2) can also be
intercepted.

memusage can output the collected data in textual form, or it can use memusagestat(1) (see the —p op-
tion, below) to create a PNG file containing graphical representation of the collected data.

Memory usage summary
The "Memory usage summary" line output by memusage contains three fields:

heap total
Sum of size arguments of all malloc(3) calls, products of arguments (hnmemb*size) of all
calloc(3) calls, and sum of length arguments of all mmap(2) calls. In the case of real-
loc(3) and mremap(2), if the new size of an allocation is larger than the previous size, the
sum of all such differences (new size minus old size) is added.

heap peak
Maximum of all size arguments of malloc(3), all products of nmemb*size of calloc(3), all
size arguments of realloc(3), length arguments of mmap(2), and new_size arguments of
mremap(2).

stack peak
Before the first call to any monitored function, the stack pointer address (base stack
pointer) is saved. After each function call, the actual stack pointer address is read and the
difference from the base stack pointer computed. The maximum of these differences is
then the stack peak.

Immediately following this summary line, a table shows the number calls, total memory allocated or
deallocated, and number of failed calls for each intercepted function. For realloc(3) and mremap(2),
the additional field "nomove" shows reallocations that changed the address of a block, and the addi-
tional "dec" field shows reallocations that decreased the size of the block. For realloc(3), the additional
field "free" shows reallocations that caused a block to be freed (i.e., the reallocated size was 0).

The "realloc/total memory" of the table output by memusage does not reflect cases where realloc(3) is
used to reallocate a block of memory to have a smaller size than previously. This can cause sum of all
"total memory" cells (excluding "free™) to be larger than the "free/total memory" cell.

Histogram for block sizes
The "Histogram for block sizes" provides a breakdown of memory allocations into various bucket sizes.

OPTIONS
—-Nn name, ——progname=name
Name of the program file to profile.
-p file, ——png=file
Generate PNG graphic and store it in file.
-d file, ——data=file
Generate binary data file and store it in file.

-u, ——unbuffered
Do not buffer output.

—b size, ——buffer=size
Collect size entries before writing them out.

—-no-timer
Disable timer-based (SIGPROF) sampling of stack pointer value.

Linux man-pages 6.7 2023-10-31 1

memusage(1)

-m, ——mmap

General Commands Manual

Also trace mmap(2), mremap(2), and munmap(2).

—=?, ——help
Print help and exit.

—-—usage

Print a short usage message and exit.

-V, ——version

Print version information and exit.

The following options apply only when generating graphical output:

—-t, ——time—based

memusage(1)

Use time (rather than number of function calls) as the scale for the X axis.

-T, ——total

Also draw a graph of total memory use.

——title=name

Use name as the title of the graph.

—X size, ——Xx—size=size

Make the graph size pixels wide.

-y size, ——y-size=size

Make the graph size pixels high.

EXIT STATUS

The exit status of memusage is equal to the exit status of the profiled program.

BUGS
To report bugs, see

EXAMPLES

Below is a simple program that reallocates a block of memory in cycles that rise to a peak before then
cyclically reallocating the memory in smaller blocks that return to zero. After compiling the program
and running the following commands, a graph of the memory usage of the program can be found in the

file memusage.png:

$ memusage —--data=memusage.dat ./a.out

Memory usage summary: heap total: 45200, heap peak: 6440, stack peak: 224
total calls total memory fTailed calls

malloc]
realloc|
calloc]
free]

Histogram for block sizes:

192-207

2192-2207
2240-2255
2832-2847
3440-3455
4032-4047
4640-4655
5232-5247
5840-5855
6432-6447

Program source
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.7

1

NNNNNNDNPRE

=

400

44800

2%
$ memusagestat memusage.dat memusage.png

440

2023-10-31

0
0 (nomove:40, dec:19, free:0)

memusage(1)

General Commands Manual

#define CYCLES 20

int

main(int argc, char *argv[])

{

}
SEE ALSO

=+

’ j:
e t siz
*p;

size = sizeof(*p) * 100;
printf('malloc: %zu\n", size);
p = malloc(size);

for (i
if

hlq II

else
J

size

1 /\...

i < CYCLES; i++) {
CYCLES 7/ 2)
i;

sizeof(*p) * (* 50 + 110);

printf('realloc: %zu\n', size);
p = realloc(p, size);

size

sizeof(*p) * (g + 1) * 150 + 110);

printf('realloc: %zu\n', size);
p = realloc(p, size);

}

free(p);

exit(EXIT_SUCCESS);

memusagestat(1), mtrace(1), 1d.so(8)

Linux man-pages 6.7

2023-10-31

memusage(1)

memusagestat(1) General Commands Manual

NAME

memusagestat — generate graphic from memory profiling data

SYNOPSIS

memusagestat [option]... datafile [outfile]

DESCRIPTION

memusagestat creates a PNG file containing a graphical representation of the memory profiling data in

the file datafile; that file is generated via the —d (or ——data) option of memusage(1).

The red line in the graph shows the heap usage (allocated memory) and the green line shows the stack
usage. The x-scale is either the number of memory-handling function calls or (if the —t option is speci-

fied) time.

OPTIONS

BUGS

-o file, ——output=file
Name of the output file.
—s string, ——string=string
Use string as the title inside the output graph.

-t, ——time
Use time (rather than number of function calls) as the scale for the X axis.
-T, ——total

Also draw a graph of total memory consumption.

—X size, ——Xx—size=size
Make the output graph size pixels wide.

-y size, ——y-size=size
Make the output graph size pixels high.

—=?, ——help
Print a help message and exit.

—-usage
Print a short usage message and exit.

-V, ——version
Print version information and exit.

To report bugs, see

EXAMPLES

See memusage(1).

SEE ALSO

memusage(1), mtrace(1)

Linux man-pages 6.7 2023-10-31

memusagestat(1)

mtrace(1) General Commands Manual mtrace(1)

NAME

mtrace — interpret the malloc trace log
SYNOPSIS

mtrace [option]... [binary] mtracedata
DESCRIPTION

mtrace is a Perl script used to interpret and provide human readable output of the trace log contained
in the file mtracedata, whose contents were produced by mtrace(3). If binary is provided, the output of
mtrace also contains the source file name with line number information for problem locations (assum-
ing that binary was compiled with debugging information).

For more information about the mtrace(3) function and mtrace script usage, see mtrace(3).

OPTIONS
——help Print help and exit.

——version
Print version information and exit.

BUGS
For bug reporting instructions, please see: .

SEE ALSO
memusage(1), mtrace(3)

Linux man-pages 6.7 2023-10-31 1

pldd(1) General Commands Manual pldd(1)

NAME
pldd - display dynamic shared objects linked into a process

SYNOPSIS
pldd pid
pldd option

DESCRIPTION
The pldd command displays a list of the dynamic shared objects (DSOs) that are linked into the
process with the specified process ID (PID). The list includes the libraries that have been dynamically
loaded using dlopen(3).

OPTIONS
——help
=? Display a help message and exit.

—-usage
Display a short usage message and exit.

—=version
-V Display program version information and exit.

EXIT STATUS
On success, pldd exits with the status 0. If the specified process does not exist, the user does not have
permission to access its dynamic shared object list, or no command-line arguments are supplied, pldd
exists with a status of 1. If given an invalid option, it exits with the status 64.

VERSIONS
Some other systems have a similar command.

STANDARDS
None.

HISTORY
glibc 2.15.

NOTES
The command

Isof -p PID
also shows output that includes the dynamic shared objects that are linked into a process.

The gdb(1) info shared command also shows the shared libraries being used by a process, so that one
can obtain similar output to pldd using a command such as the following (to monitor the process with
the specified pid):
$ gdb -ex "set confirm off" -ex '"set height 0" -ex "info shared" \
-ex "'quit" -p $pid | grep "~Ox.*0Ox"
BUGS

From glibc 2.19 to glibc 2.29, pldd was broken: it just hung when executed. This problem was fixed in
glibc 2.30, and the fix has been backported to earlier glibc versions in some distributions.

EXAMPLES
$ echo $$ # Display PID of shell
1143
$ pldd $% # Display DSOs linked into the shell

1143: /usr/bin/bash
linux-vdso.so.1
/1ib64/libtinfo.so.5
/1ib64/1ibdl.so.2
/1ib64/1ibc.so.6
/1ib64/1d-1inux—-x86-64.s0.2
/1ib64/libnss _files.so0.2

SEE ALSO
Idd(1), Isof (1), dlopen(3), 1d.so(8)

Linux man-pages 6.7 2023-10-31 1

sprof (1) General Commands Manual sprof (1)

NAME

sprof — read and display shared object profiling data
SYNOPSIS

sprof [option]... shared-object-path [profile-data-path]
DESCRIPTION

The sprof command displays a profiling summary for the shared object (shared library) specified as its
first command-line argument. The profiling summary is created using previously generated profiling
data in the (optional) second command-line argument. If the profiling data pathname is omitted, then
sprof will attempt to deduce it using the soname of the shared object, looking for a file with the name
<soname>.profile in the current directory.

OPTIONS
The following command-line options specify the profile output to be produced:

——call-pairs
—-C Print a list of pairs of call paths for the interfaces exported by the shared object, along with the
number of times each path is used.

——flat—profile

-p Generate a flat profile of all of the functions in the monitored object, with counts and ticks.
——graph

-q Generate a call graph.

If none of the above options is specified, then the default behavior is to display a flat profile and a call
graph.

The following additional command-line options are available:

——help
=? Display a summary of command-line options and arguments and exit.

—-usage
Display a short usage message and exit.

—=version
-V Display the program version and exit.

STANDARDS
GNU.

EXAMPLES
The following example demonstrates the use of sprof. The example consists of a main program that
calls two functions in a shared object. First, the code of the main program:

$ cat prog.c
#include <stdlib.h>

void x1(void);
void x2(void);

int
main(int argc, char *argv[])
{
x1Q0);
x20);
exit(EXIT_SUCCESS);
}
The functions x1() and x2() are defined in the following source file that is used to construct the shared
object:

$ cat libdemo.c
#include <unistd.h>

void

Linux man-pages 6.7 2023-10-31 1

sprof (1)

General Commands Manual sprof (1)

consumeCpul(int Lim)

{

for (unsigned int j = 0; j < Llim; j++)
getppid();
¥

void
x1(void) {
for (unsigned int j = 0; j < 100; j++)
consumeCpul(200000);
}

void
consumeCpu2(int Lim)

{
for (unsigned int j = 0; j < Llim; j++)
getppid();
¥

void
x2(void)
{
for (unsigned int j = 0; j < 1000; j++)
consumeCpu2(10000) ;
}

Now we construct the shared object with the real name libdemo.s0.1.0.1, and the soname libdemo.so.1

$ cc —g —-fPIC -shared -WI,-soname, libdemo.so.1 \
-0 libdemo.s0.1.0.1 libdemo.c

Then we construct symbolic links for the library soname and the library linker name:

$ In -sf libdemo.so0.1.0.1 libdemo.so.1
$ In -sf libdemo.so.1 libdemo.so

Next, we compile the main program, linking it against the shared object, and then list the dynamic de-
pendencies of the program:
$ cc -g -0 prog prog.-c -L. -ldemo
$ 1dd prog
linux-vdso.so.1 => (0x00007fff86d66000)
libdemo.so.1l => not found
libc.so.6 => /l1ib64/libc.so0.6 (0x00007fd4dc138000)
/1i1b64/1d-1inux-x86-64.s0.2 (0x00007fd4dc51f000)

In order to get profiling information for the shared object, we define the environment variable
LD_PROFILE with the soname of the library:

$ export LD _PROFILE=libdemo.so.1

We then define the environment variable LD _PROFILE_OUTPUT with the pathname of the directory
where profile output should be written, and create that directory if it does not exist already:

$ export LD_PROFILE_OUTPUT=$(pwd)/prof_data
$ mkdir -p $LD_PROFILE_OUTPUT

LD_PROFILE causes profiling output to be appended to the output file if it already exists, so we en-
sure that there is no preexisting profiling data:

$ rm —F $LD_PROFILE_OUTPUT/$LD_PROFILE.profile

We then run the program to produce the profiling output, which is written to a file in the directory spec-
ified in LD_PROFILE_OUTPUT:

$ LD _LIBRARY_PATH=. ./prog
$ Is prof_data

Linux man-pages 6.7 2023-10-31 2

sprof (1)

General Commands Manual

libdemo.so.1.profile

sprof (1)

We then use the sprof —p option to generate a flat profile with counts and ticks:

$ sprof —p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative
time seconds

60.00
40.00
0.00
0.00

The sprof —q option generates a call graph:

0.06
0.10
0.10
0.10

self
seconds

0.06
0.04
0.00
0.00

self
calls us/call
100 600.00
1000 40.00
1 0.00
1 0.00

total

us/call name
consumeCpul
consumeCpu?2
x1
X2

$ sprof —-q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

index % time

self

.00

name

x1 [1]
consumeCpul [O]

<UNKNOWN>
x1 [1]
consumeCpul [O]

x2 [3]
consumeCpu2 [2]

[0] 100.0
[1] 0.0
[2] 0.0
[3] 0.0

children called
0.00 100/100
0.00 100
0.00 171
0.00 1
0.00 100/100
0.00 1000/1000
0.00 1000
0.00 171
0.00 1
0.00 1000/1000

<UNKNOWN>
x2 [3]
consumeCpu2 [2]

Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of the profiled ob-
ject (in this example, these are instances of main()).

The sprof —c option generates a list of call pairs and the number of their occurrences:
$ sprof -c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

<UNKNOWN>
x1
<UNKNOWN>
X2

SEE ALSO

gprof (1), Idd(1), 1d.so(8)

Linux man-pages 6.7

x1

consumeCpul

X2

consumeCpu?2

2023-10-31

1
100
1
1000

time(1) General Commands Manual time(1)

NAME

time — time a simple command or give resource usage
SYNOPSIS

time [option ...] command [argument . ..]
DESCRIPTION

The time command runs the specified program command with the given arguments. When command
finishes, time writes a message to standard error giving timing statistics about this program run. These
statistics consist of (i) the elapsed real time between invocation and termination, (ii) the user CPU time
(the sum of the tms_utime and tms_cutime values in a struct tms as returned by times(2)), and (iii) the
system CPU time (the sum of the tms_stime and tms_cstime values in a struct tms as returned by
times(2)).

Note: some shells (e.g., bash(1)) have a built-in time command that provides similar information on
the usage of time and possibly other resources. To access the real command, you may need to specify
its pathname (something like /usr/bin/time).

OPTIONS
-p When in the POSIX locale, use the precise traditional format
"real %f\nuser %f\nsys %f\n"
(with numbers in seconds) where the number of decimals in the output for %f is unspecified
but is sufficient to express the clock tick accuracy, and at least one.
EXIT STATUS

If command was invoked, the exit status is that of command. Otherwise, it is 127 if command could
not be found, 126 if it could be found but could not be invoked, and some other nonzero value (1-125)
if something else went wrong.

ENVIRONMENT
The variables LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_NUMERIC, and NLSPATH
are used for the text and formatting of the output. PATH is used to search for command.

GNU VERSION
Below a description of the GNU 1.7 version of time. Disregarding the name of the utility, GNU makes
it output lots of useful information, not only about time used, but also on other resources like memory,
I/0 and IPC calls (where available). The output is formatted using a format string that can be specified
using the —f option or the TIME environment variable.

The default format string is:

%Uuser %Ssystem %Eelapsed %PCPU (%Xtext+%Ddata %Mmax)k
%1 inputs+%0outputs (%Fmajor+%Rminor)pagefaults %Wswaps

When the —p option is given, the (portable) output format is used:

real %e
user %U
sys %S

The format string
The format is interpreted in the usual printf-like way. Ordinary characters are directly copied, tab, new-
line, and backslash are escaped using \t, \n, and \\, a percent sign is represented by %%, and otherwise
% indicates a conversion. The program time will always add a trailing newline itself. The conversions
follow. All of those used by tcsh(1) are supported.

Time

%E Elapsed real time (in [hours:]minutes:seconds).

%e (Not in tecsh(1)Elapsed real time (in seconds).

%S Total number of CPU-seconds that the process spent in kernel mode.
%U Total number of CPU-seconds that the process spent in user mode.

%P Percentage of the CPU that this job got, computed as (%U + %S) / %E.

Memory

Linux man-pages 6.7 2023-10-31 1

time(1)

%M
%t

%K
%D
%p

%X
%Z

%F

%R

%W

%¢cC

%w

1/0
%l
%0
%r
%s
%k
%C

%X

GNU options

General Commands Manual time(1)

Maximum resident set size of the process during its lifetime, in Kbytes.
(Not in tesh(1)Average resident set size of the process, in Kbytes.

Average total (data+stack+text) memory use of the process, in Kbytes.
Average size of the process’s unshared data area, in Kbytes.

(Not in tcsh(1)Average size of the process’s unshared stack space, in Kbytes.
Average size of the process’s shared text space, in Kbytes.

(Not in tcsh(1)System’s page size, in bytes. This is a per-system constant, but varies between
systems.

Number of major page faults that occurred while the process was running. These are faults
where the page has to be read in from disk.

Number of minor, or recoverable, page faults. These are faults for pages that are not valid but
which have not yet been claimed by other virtual pages. Thus the data in the page is still valid
but the system tables must be updated.

Number of times the process was swapped out of main memory.

Number of times the process was context-switched involuntarily (because the time slice ex-
pired).

Number of waits: times that the program was context-switched voluntarily, for instance while
waiting for an 1/0 operation to complete.

Number of filesystem inputs by the process.

Number of filesystem outputs by the process.

Number of socket messages received by the process.

Number of socket messages sent by the process.

Number of signals delivered to the process.

(Not in tcsh(1)Name and command-line arguments of the command being timed.

(Not in tesh(1)Exit status of the command.

—f format, ——format= format

Specify output format, possibly overriding the format specified in the environment variable
TIME.

—-p, ——portability

Use the portable output format.

-o file, ——output=file

Do not send the results to stderr, but overwrite the specified file.

-a, ——append

(Used together with —0.) Do not overwrite but append.

-v, ——Vverbose

Give very verbose output about all the program knows about.

—(, ——quiet

Don’t report abnormal program termination (where command is terminated by a signal) or
nonzero exit status.

GNU standard options
——help Print a usage message on standard output and exit successfully.

-V, ——version

Print version information on standard output, then exit successfully.

Linux man-pages 6.7 2023-10-31 2

time(1) General Commands Manual time(1)

- Terminate option list.

BUGS
Not all resources are measured by all versions of UNIX, so some of the values might be reported as
zero. The present selection was mostly inspired by the data provided by 4.2 or 4.3BSD.

GNU time version 1.7 is not yet localized. Thus, it does not implement the POSIX requirements.

The environment variable TIME was badly chosen. It is not unusual for systems like autoconf (1) or
make(1) to use environment variables with the name of a utility to override the utility to be used. Uses
like MORE or TIME for options to programs (instead of program pathnames) tend to lead to difficul-
ties.

It seems unfortunate that —o overwrites instead of appends. (That is, the —a option should be the de-
fault.)

Mail suggestions and bug reports for GNU time to bug—time@gnu.org. Please include the version of
time, which you can get by running

time —-version
and the operating system and C compiler you used.

SEE ALSO
bash(1), tcsh(1), times(2), wait3(2)

Linux man-pages 6.7 2023-10-31 3

intro(2) System Calls Manual intro(2)

NAME
intro — introduction to system calls

DESCRIPTION
Section 2 of the manual describes the Linux system calls. A system call is an entry point into the Linux
kernel. Usually, system calls are not invoked directly: instead, most system calls have corresponding C
library wrapper functions which perform the steps required (e.g., trapping to kernel mode) in order to
invoke the system call. Thus, making a system call looks the same as invoking a normal library func-
tion.

In many cases, the C library wrapper function does nothing more than:

e copying arguments and the unique system call number to the registers where the kernel expects
them;

» trapping to kernel mode, at which point the kernel does the real work of the system call;

» setting errno if the system call returns an error number when the kernel returns the CPU to user
mode.

However, in a few cases, a wrapper function may do rather more than this, for example, performing
some preprocessing of the arguments before trapping to kernel mode, or postprocessing of values re-
turned by the system call. Where this is the case, the manual pages in Section 2 generally try to note
the details of both the (usually GNU) C library API interface and the raw system call. Most commonly,
the main DESCRIPTION will focus on the C library interface, and differences for the system call are
covered in the NOTES section.

For a list of the Linux system calls, see syscalls(2).

RETURN VALUE
On error, most system calls return a negative error number (i.e., the negated value of one of the con-
stants described in errno(3)). The C library wrapper hides this detail from the caller: when a system
call returns a negative value, the wrapper copies the absolute value into the errno variable, and returns
-1 as the return value of the wrapper.

The value returned by a successful system call depends on the call. Many system calls return 0 on suc-
cess, but some can return nonzero values from a successful call. The details are described in the indi-
vidual manual pages.

In some cases, the programmer must define a feature test macro in order to obtain the declaration of a
system call from the header file specified in the man page SYNOPSIS section. (Where required, these
feature test macros must be defined before including any header files.) In such cases, the required
macro is described in the man page. For further information on feature test macros, see fea-
ture_test_macros(7).

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to which calls in this
section conform. See standards(7).

NOTES
Calling directly
In most cases, it is unnecessary to invoke a system call directly, but there are times when the Standard
C library does not implement a nice wrapper function for you. In this case, the programmer must man-
ually invoke the system call using syscall(2). Historically, this was also possible using one of the
_syscall macros described in _syscall(2).

Authors and copyright conditions
Look at the header of the manual page source for the author(s) and copyright conditions. Note that
these can be different from page to page!

SEE ALSO
_syscall(2), syscall(2), syscalls(2), errno(3), intro(3), capabilities(7), credentials(7),
feature_test_macros(7), mq_overview(7), path_resolution(7), pipe(7), pty(7), sem_overview(7),
shm_overview(7), signal(7), socket(7), standards(7), symlink(7), system_data_types(7), sysvipc(7),
time(7)

Linux man-pages 6.7 2023-10-31 1

accept(2) System Calls Manual accept(2)

NAME

accept, accept4 — accept a connection on a socket

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen);

#define _ GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int accept4(int sockfd, struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen, int flags);

DESCRIPTION

The accept() system call is used with connection-based socket types (SOCK_STREAM, SOCK_SE-
QPACKET). It extracts the first connection request on the queue of pending connections for the listen-
ing socket, sockfd, creates a new connected socket, and returns a new file descriptor referring to that
socket. The newly created socket is not in the listening state. The original socket sockfd is unaffected
by this call.

The argument sockfd is a socket that has been created with socket(2), bound to a local address with
bind(2), and is listening for connections after a listen(2).

The argument addr is a pointer to a sockaddr structure. This structure is filled in with the address of
the peer socket, as known to the communications layer. The exact format of the address returned addr
is determined by the socket’s address family (see socket(2) and the respective protocol man pages).
When addr is NULL, nothing is filled in; in this case, addrlen is not used, and should also be NULL.

The addrlen argument is a value-result argument: the caller must initialize it to contain the size (in
bytes) of the structure pointed to by addr; on return it will contain the actual size of the peer address.

The returned address is truncated if the buffer provided is too small; in this case, addrlen will return a
value greater than was supplied to the call.

If no pending connections are present on the queue, and the socket is not marked as nonblocking, ac-
cept() blocks the caller until a connection is present. If the socket is marked nonblocking and no pend-
ing connections are present on the queue, accept() fails with the error EAGAIN or EWOULD-
BLOCK.

In order to be notified of incoming connections on a socket, you can use select(2), poll(2), or epoll(7).
A readable event will be delivered when a new connection is attempted and you may then call accept()
to get a socket for that connection. Alternatively, you can set the socket to deliver SIGIO when activity
occurs on a socket; see socket(7) for details.

If flags is O, then accept4() is the same as accept(). The following values can be bitwise ORed in
flags to obtain different behavior:

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description (see open(2))
referred to by the new file descriptor. Using this flag saves extra calls to fcntl(2) to
achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the de-
scription of the O_CLOEXEC flag in open(2) for reasons why this may be useful.

RETURN VALUE

On success, these system calls return a file descriptor for the accepted socket (a nonnegative integer).
On error, =1 is returned, errno is set to indicate the error, and addrlen is left unchanged.

Error handling

Linux accept() (and accept4()) passes already-pending network errors on the new socket as an error
code from accept(). This behavior differs from other BSD socket implementations. For reliable opera-
tion the application should detect the network errors defined for the protocol after accept() and treat

Linux man-pages 6.7 2023-10-31 1

accept(2) System Calls Manual accept(2)

them like EAGAIN by retrying. In the case of TCP/IP, these are ENETDOWN, EPROTO, ENO-
PROTOOPT, EHOSTDOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, and ENETUN-
REACH.

ERRORS
EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and no connections are present to be accepted.
POSIX.1-2001 and POSIX.1-2008 allow either error to be returned for this case, and do not
require these constants to have the same value, so a portable application should check for both

possibilities.
EBADF
sockfd is not an open file descriptor.
ECONNABORTED
A connection has been aborted.
EFAULT
The addr argument is not in a writable part of the user address space.

EINTR
The system call was interrupted by a signal that was caught before a valid connection arrived,;
see signal(7).

EINVAL
Socket is not listening for connections, or addrlen is invalid (e.g., is negative).

EINVAL
(accept4()) invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOBUFS

ENOMEM
Not enough free memory. This often means that the memory allocation is limited by the
socket buffer limits, not by the system memory.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPERM
Firewall rules forbid connection.

EPROTO
Protocol error.

In addition, network errors for the new socket and as defined for the protocol may be returned. Various
Linux kernels can return other errors such as ENOSR, ESOCKTNOSUPPORT, EPROTONOSUP-
PORT, ETIMEDOUT. The value ERESTARTSYS may be seen during a trace.

VERSIONS
On Linux, the new socket returned by accept() does not inherit file status flags such as O_NON-
BLOCK and O_ASYNC from the listening socket. This behavior differs from the canonical BSD
sockets implementation. Portable programs should not rely on inheritance or noninheritance of file sta-
tus flags and always explicitly set all required flags on the socket returned from accept().

STANDARDS
accept()
POSIX.1-2008.

Linux man-pages 6.7 2023-10-31 2

accept(2) System Calls Manual accept(2)

accept4()
Linux.

HISTORY
accept()
POSIX.1-2001, SVr4, 4.4BSD (accept() first appeared in 4.2BSD).

accept4()
Linux 2.6.28, glibc 2.10.

NOTES
There may not always be a connection waiting after a SIGIO is delivered or select(2), poll(2), or
epoll(7) return a readability event because the connection might have been removed by an asynchro-
nous network error or another thread before accept() is called. If this happens, then the call will block
waiting for the next connection to arrive. To ensure that accept() never blocks, the passed socket
sockfd needs to have the O_NONBLOCK flag set (see socket(7)).

For certain protocols which require an explicit confirmation, such as DECnet, accept() can be thought
of as merely dequeuing the next connection request and not implying confirmation. Confirmation can
be implied by a normal read or write on the new file descriptor, and rejection can be implied by closing
the new socket. Currently, only DECnet has these semantics on Linux.

The socklen_t type
In the original BSD sockets implementation (and on other older systems) the third argument of ac-
cept() was declared as an int *. A POSIX.1g draft standard wanted to change it into a size_t *C; later
POSIX standards and glibc 2.x have socklen_t * .

EXAMPLES
See bind(2).

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

Linux man-pages 6.7 2023-10-31 3

access(2) System Calls Manual access(2)

NAME

access, faccessat, faccessat2 — check user’s permissions for a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int access(const char * pathname, int mode);

#include <fcntl.h> /* Definition of AT _* constants */
#include <unistd.h>

int faccessat(int dirfd, const char * pathname, int mode, int flags);
/* But see C library/kernel differences, below */

#include <fcntl.h> /* Definition of AT _* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_faccessat?,
int dirfd, const char * pathname, int mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

faccessat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
access() checks whether the calling process can access the file pathname. If pathname is a symbolic
link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value F_OK, or a mask
consisting of the bitwise OR of one or more of R_OK, W_OK, and X_OK. F_OK tests for the exis-
tence of the file. R_OK, W_OK, and X_OK test whether the file exists and grants read, write, and ex-
ecute permissions, respectively.

The check is done using the calling process’s real UID and GID, rather than the effective IDs as is done
when actually attempting an operation (e.g., open(2)) on the file. Similarly, for the root user, the check
uses the set of permitted capabilities rather than the set of effective capabilities; and for non-root users,
the check uses an empty set of capabilities.

This allows set-user-1D programs and capability-endowed programs to easily determine the invoking
user’s authority. In other words, access() does not answer the "can | read/write/execute this file?" ques-
tion. It answers a slightly different question: "(assuming I’m a setuid binary) can the user who invoked
me read/write/execute this file?", which gives set-user-1D programs the possibility to prevent malicious
users from causing them to read files which users shouldn’t be able to read.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is successful for a
regular file if execute permission is enabled for any of the file owner, group, or other.

faccessat()
faccessat() operates in exactly the same way as access(), except for the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to
by the file descriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by access() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted rela-
tive to the current working directory of the calling process (like access())

If pathname is absolute, then dirfd is ignored.

flags is constructed by ORing together zero or more of the following values:

Linux man-pages 6.7 2024-01-01 1

access(2) System Calls Manual access(2)

AT_EACCESS
Perform access checks using the effective user and group IDs. By default, faccessat() uses the
real IDs (like access())

AT_EMPTY_PATH (since Linux 5.8)
If pathname is an empty string, operate on the file referred to by dirfd (which may have been
obtained using the open(2) O_PATH flag). In this case, dirfd can refer to any type of file, not
just a directory. If dirfd is AT_FDCWD, the call operates on the current working directory.
This flag is Linux-specific; define _GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return information about the link
itself.

See openat(2) for an explanation of the need for faccessat().

faccessat2()
The description of faccessat() given above corresponds to POSIX.1 and to the implementation pro-
vided by glibc. However, the glibc implementation was an imperfect emulation (see BUGS) that pa-
pered over the fact that the raw Linux faccessat() system call does not have a flags argument. To allow
for a proper implementation, Linux 5.8 added the faccessat2() system call, which supports the flags ar-
gument and allows a correct implementation of the faccessat() wrapper function.

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists), zero is returned.
On error (at least one bit in mode asked for a permission that is denied, or mode is F_OK and the file
does not exist, or some other error occurred), —1 is returned, and errno is set to indicate the error.

ERRORS
EACCES
The requested access would be denied to the file, or search permission is denied for one of the
directories in the path prefix of pathname. (See also path_resolution(7).)

EBADF
(faccessat()) pathname is relative but dirfd is neither AT_FDCWD (faccessat()) nor a valid
file descriptor.

EFAULT
pathname points outside your accessible address space.

EINVAL
mode was incorrectly specified.

EINVAL
(faccessat()) Invalid flag specified in flags.

EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
A component of pathname does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

ENOTDIR
(faccessat()) pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.

Linux man-pages 6.7 2024-01-01 2

access(2) System Calls Manual access(2)

EPERM
Write permission was requested to a file that has the immutable flag set. See also
ioctl_iflags(2).

EROFS
Write permission was requested for a file on a read-only filesystem.

ETXTBSY
Write access was requested to an executable which is being executed.

VERSIONS
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 permits an imple-
mentation to indicate success for an X_OK check even if none of the execute file permission bits are
set. Linux does not do this.

C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EACCESS and
AT_SYMLINK_NOFOLLOW flags are actually implemented within the glibc wrapper function for
faccessat(). If either of these flags is specified, then the wrapper function employs fstatat(2) to deter-
mine access permissions, but see BUGS.

glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and AT_SYM-
LINK_NOFOLLOW flags are not specified), the glibc wrapper function falls back to the use of ac-
cess(). When pathname is a relative pathname, glibc constructs a pathname based on the symbolic link
in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
access()
faccessat()
POSIX.1-2008.

faccessat2()
Linux.

HISTORY
access()
SVr4, 4.3BSD, POSIX.1-2001.

faccessat()
Linux 2.6.16, glibc 2.4.

faccessat2()
Linux 5.8.

NOTES
Warning: Using these calls to check if a user is authorized to, for example, open a file before actually
doing so using open(2) creates a security hole, because the user might exploit the short time interval be-
tween checking and opening the file to manipulate it. For this reason, the use of this system call
should be avoided. (In the example just described, a safer alternative would be to temporarily switch
the process’s effective user ID to the real ID and then call open(2).)

access() always dereferences symbolic links. If you need to check the permissions on a symbolic link,
use faccessat() with the flag AT_SYMLINK_NOFOLLOW.

These calls return an error if any of the access types in mode is denied, even if some of the other access
types in mode are permitted.

A file is accessible only if the permissions on each of the directories in the path prefix of pathname
grant search (i.e., execute) access. If any directory is inaccessible, then the access() call fails, regard-
less of the permissions on the file itself.

Only access bits are checked, not the file type or contents. Therefore, if a directory is found to be
writable, it probably means that files can be created in the directory, and not that the directory can be
written as a file. Similarly, a DOS file may be reported as executable, but the execve(2) call will still
fail.

These calls may not work correctly on NFSv2 filesystems with UID mapping enabled, because UID

Linux man-pages 6.7 2024-01-01 3

access(2) System Calls Manual access(2)

BUGS

mapping is done on the server and hidden from the client, which checks permissions. (NFS versions 3
and higher perform the check on the server.) Similar problems can occur to FUSE mounts.

Because the Linux kernel’s faccessat() system call does not support a flags argument, the glibc facces-
sat() wrapper function provided in glibc 2.32 and earlier emulates the required functionality using a
combination of the faccessat() system call and fstatat(2). However, this emulation does not take ACLs
into account. Starting with glibc 2.33, the wrapper function avoids this bug by making use of the fac-
cessat2() system call where it is provided by the underlying kernel.

In Linux 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for superuser. If all
categories of execute permission are disabled for a nondirectory file, then the only access() test that re-
turns =1 is when mode is specified as just X_OK; if R_OK or W_OK is also specified in mode, then
access() returns 0 for such files. Early Linux 2.6 (up to and including Linux 2.6.3) also behaved in the
same way as Linux 2.4.

Before Linux 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was used to mount(2)
the underlying filesystem. Since Linux 2.6.20, the MS_NOEXEC flag is honored.

SEE ALSO

chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), credentials(7), path_resolu-
tion(7), symlink(7)

Linux man-pages 6.7 2024-01-01 4

acct(2) System Calls Manual acct(2)

NAME

acct — switch process accounting on or off
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int acct(const char *_Nullable filename);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acct():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:
_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:
_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The acct() system call enables or disables process accounting. If called with the name of an existing
file as its argument, accounting is turned on, and records for each terminating process are appended to
filename as it terminates. An argument of NULL causes accounting to be turned off.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EACCES
Write permission is denied for the specified file, or search permission is denied for one of the
directories in the path prefix of filename (see also path_resolution(7)), or filename is not a
regular file.
EFAULT

filename points outside your accessible address space.
EIO Error writing to the file filename.

EISDIR
filename is a directory.

ELOOP
Too many symbolic links were encountered in resolving filename.

ENAMETOOLONG
filename was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The specified file does not exist.

ENOMEM
Out of memory.

ENOSYS
BSD process accounting has not been enabled when the operating system kernel was com-
piled. The kernel configuration parameter controlling this feature is CON-
FIG_BSD_PROCESS_ACCT.

ENOTDIR
A component used as a directory in filename is not in fact a directory.

EPERM
The calling process has insufficient privilege to enable process accounting. On Linux, the
CAP_SYS_PACCT capability is required.

Linux man-pages 6.7 2023-10-31 1

acct(2) System Calls Manual acct(2)

EROFS
filename refers to a file on a read-only filesystem.

EUSERS
There are no more free file structures or we ran out of memory.

STANDARDS
None.

HISTORY
SVré4, 4.3BSD.

NOTES
No accounting is produced for programs running when a system crash occurs. In particular, nontermi-
nating processes are never accounted for.

The structure of the records written to the accounting file is described in acct(5).

SEE ALSO
acct(5)

Linux man-pages 6.7 2023-10-31 2

add_key(2) System Calls Manual add_key(2)

NAME

add_key — add a key to the kernel’s key management facility
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <keyutils.h>

key serial_t add_key(const char *type, const char *description,
const void payload[.plen], size_t plen,
key_serial_t keyring);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
add_key() creates or updates a key of the given type and description, instantiates it with the payload
of length plen, attaches it to the nominated keyring, and returns the key’s serial number.

The key may be rejected if the provided data is in the wrong format or it is invalid in some other way.

If the destination keyring already contains a key that matches the specified type and description, then, if
the key type supports it, that key will be updated rather than a new key being created; if not, a new key
(with a different ID) will be created and it will displace the link to the extant key from the keyring.

The destination keyring serial number may be that of a valid keyring for which the caller has write per-
mission. Alternatively, it may be one of the following special keyring 1Ds:

KEY_SPEC_THREAD_KEYRING
This specifies the caller’s thread-specific keyring (thread—keyring(7)).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring (process—keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (session—keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (user—keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (user—session—keyring(7)).

Key types
The key type is a string that specifies the key’s type. Internally, the kernel defines a number of key
types that are available in the core key management code. Among the types that are available for user-
space use and can be specified as the type argument to add_key() are the following:

"keyring"
Keyrings are special key types that may contain links to sequences of other keys of any type.
If this interface is used to create a keyring, then payload should be NULL and plen should be
zero.

"user" This is a general purpose key type whose payload may be read and updated by user-space ap-
plications. The key is kept entirely within kernel memory. The payload for keys of this type
is a blob of arbitrary data of up to 32,767 bytes.

"logon" (since Linux 3.3)
This key type is essentially the same as "user™, but it does not permit the key to read. This is
suitable for storing payloads that you do not want to be readable from user space.

This key type vets the description to ensure that it is qualified by a "service" prefix, by checking to en-
sure that the description contains a :” that is preceded by other characters.

"big_key" (since Linux 3.13)
This key type is similar to "user"”, but may hold a payload of up to 1 MiB. If the key payload
is large enough, then it may be stored encrypted in tmpfs (which can be swapped out) rather
than kernel memory.

For further details on these key types, see keyrings(7).

Linux man-pages 6.7 2024-02-25 1

add_key(2) System Calls Manual add_key(2)

RETURN VALUE
On success, add_key() returns the serial number of the key it created or updated. On error, -1 is re-
turned and errno is set to indicate the error.

ERRORS

EACCES
The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking it to the keyring.

EFAULT
One or more of type, description, and payload points outside process’s accessible address
space.

EINVAL
The size of the string (including the terminating null byte) specified in type or description ex-
ceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The payload data was invalid.

EINVAL
type was "logon" and the description was not qualified with a prefix string of the form "ser-
vice:".

EKEYEXPIRED
The keyring has expired.

EKEYREVOKED
The keyring has been revoked.

ENOKEY
The keyring doesn’t exist.

ENOMEM
Insufficient memory to create a key.

EPERM
The type started with a period ('."). Key types that begin with a period are reserved to the im-
plementation.

EPERM
type was "keyring" and the description started with a period ('."). Keyrings with descriptions
(names) that begin with a period are reserved to the implementation.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

NOTES
glibc does not provide a wrapper for this system call. A wrapper is provided in the libkeyutils library.
(The accompanying package provides the <keyutils.n> header file.) When employing the wrapper in
that library, link with —lkeyutils.

EXAMPLES
The program below creates a key with the type, description, and payload specified in its command-line
arguments, and links that key into the session keyring. The following shell session demonstrates the
use of the program:

$./a.out user mykey "Some payload"

Key ID i1s 64addca

$ grep "64addca” /proc/keys

O64addca 1--Q—- 1 perm 3010000 1000 1000 user mykey: 12

Linux man-pages 6.7 2024-02-25 2

add_key(2) System Calls Manual add_key(2)

Program source

#include <keyutils_h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])

{
key serial_t key;

if (argc 1= 4) {
fprintf(stderr, "Usage: %s type description payload\n",

argv[0o]D);
exit(EXIT_FAILURE);

}

key = add_key(argv[1l], argv[2], argv[3], strlen(argv[3]),
KEY_SPEC_SESSION_KEYRING) ;
if (key == -1) {
perror('add_key");
exit(EXIT_FAILURE);

}
printf("’Key ID is %jx\n", (uintmax_t) key);

exi1t(EXIT_SUCCESS);
}
SEE ALSO
keyctl (1), keyctl(2), request_key(2), keyctl(3), keyrings(7), keyutils(7), persistent-keyring(7), process-
keyring(7), session-keyring(7), thread-keyring(7), user-keyring(7), user-session-keyring(7)
The kernel source files Documentation/security/keys/core.rst and Documentation/keys/request—key.rst

(or, before Linux 4.13, in the files Documentation/security/keys.txt and
Documentation/security/keys—request—key.txt).

Linux man-pages 6.7 2024-02-25 3

adjtimex(2) System Calls Manual adjtimex(2)

NAME

adjtimex, clock_adjtime, ntp_adjtime — tune kernel clock
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/timex.h>

int adjtimex(struct timex *buf);

int clock_adjtime(clockid_t clk_id, struct timex *buf);
int ntp_adjtime(struct timex *buf);

DESCRIPTION
Linux uses David L. Mills’ clock adjustment algorithm (see RFC 5905). The system call adjtimex()
reads and optionally sets adjustment parameters for this algorithm. It takes a pointer to a timex struc-
ture, updates kernel parameters from (selected) field values, and returns the same structure updated
with the current kernel values. This structure is declared as follows:

struct timex {
int modes; /* Mode selector */
long offset; /* Time offset; nanoseconds, if STA_NANO
status flag is set, otherwise
microseconds */

long freq; /* Frequency offset; see NOTES for units */
long maxerror; /* Maximum error (microseconds) */

long esterror; /* Estimated error (microseconds) */

int status; /* Clock command/status */

long constant; /* PLL (phase-locked loop) time constant */

long precision; /* Clock precision
(microseconds, read-only) */

long tolerance; /* Clock frequency tolerance (read-only);
see NOTES for units */

struct timeval time;

/* Current time (read-only, except for

ADJ_SETOFFSET); upon return, time.tv_usec
contains nanoseconds, if STA NANO status
flag is set, otherwise microseconds */

long tick; /* Microseconds between clock ticks */

long ppsfreq; /* PPS (pulse per second) frequency
(read-only); see NOTES for units */

long jitter; /* PPS jitter (read-only); nanoseconds, if

STA NANO status flag is set, otherwise
microseconds */

int shift; /* PPS interval duration
(seconds, read-only) */

long stabil; /* PPS stability (read-only);
see NOTES for units */

long jitcnt; /* PPS count of jitter limit exceeded
events (read-only) */

long calcnt; /* PPS count of calibration intervals
(read-only) */

long errcnt; /* PPS count of calibration errors
(read-only) */

long stbcnt; /* PPS count of stability limit exceeded
events (read-only) */

int tai; /* TAl offset, as set by previous ADJ_TAI

operation (seconds, read-only,
since Linux 2.6.26) */
/* Further padding bytes to allow for future expansion */

};

Linux man-pages 6.7 2023-10-31 1

adjtimex(2) System Calls Manual adjtimex(2)

The modes field determines which parameters, if any, to set. (As described later in this page, the con-
stants used for ntp_adjtime() are equivalent but differently named.) It is a bit mask containing a bit-
wise OR combination of zero or more of the following bits:

ADJ_OFFSET
Set time offset from buf.offset. Since Linux 2.6.26, the supplied value is clamped to the range
(-0.5s, +0.5s). In older kernels, an EINVAL error occurs if the supplied value is out of range.

ADJ_FREQUENCY
Set frequency offset from buf.freq. Since Linux 2.6.26, the supplied value is clamped to the
range (—-32768000, +32768000). In older kernels, an EINVAL error occurs if the supplied
value is out of range.

ADJ MAXERROR
Set maximum time error from buf.maxerror.

ADJ ESTERROR
Set estimated time error from buf.esterror.

ADJ_STATUS
Set clock status bits from buf.status. A description of these bits is provided below.

ADJ_TIMECONST
Set PLL time constant from buf.constant. If the STA_NANO status flag (see below) is clear,
the kernel adds 4 to this value.

ADJ_SETOFFSET (since Linux 2.6.39)
Add buftime to the current time. If bufstatus includes the ADJ_NANO flag, then
buf.time.tv_usec is interpreted as a nanosecond value; otherwise it is interpreted as microsec-
onds.

The value of buf.time is the sum of its two fields, but the field buf.time.tv_usec must always be
nonnegative. The following example shows how to normalize a timeval with nanosecond res-

olution.
while (buf.time.tv_usec < 0) {
buf.time.tv_sec -=1;
buf.time.tv_usec += 1000000000;
¥

ADJ_MICRO (since Linux 2.6.26)
Select microsecond resolution.

ADJ_NANO (since Linux 2.6.26)
Select nanosecond resolution. Only one of ADJ_MICRO and ADJ_NANO should be speci-
fied.

ADJ_TAI (since Linux 2.6.26)
Set TAI (Atomic International Time) offset from buf.constant.

ADJ_TAI should not be used in conjunction with ADJ_TIMECONST, since the latter mode
also employs the buf.constant field.

For a complete explanation of TAI and the difference between TAl and UTC, see BIPM

ADJ TICK
Set tick value from buf.tick.

Alternatively, modes can be specified as either of the following (multibit mask) values, in which case
other bits should not be specified in modes:

ADJ_OFFSET_SINGLESHOT
Old-fashioned adjtime(3): (gradually) adjust time by value specified in buf.offset, which speci-
fies an adjustment in microseconds.

ADJ_OFFSET_SS_READ (functional since Linux 2.6.28)
Return (in buf.offset) the remaining amount of time to be adjusted after an earlier ADJ_OFF-
SET_SINGLESHOT operation. This feature was added in Linux 2.6.24, but did not work
correctly until Linux 2.6.28.

Linux man-pages 6.7 2023-10-31 2

adjtimex(2) System Calls Manual adjtimex(2)

Ordinary users are restricted to a value of either 0 or ADJ_OFFSET_SS_READ for modes. Only the
superuser may set any parameters.

The buf.status field is a bit mask that is used to set and/or retrieve status bits associated with the NTP
implementation. Some bits in the mask are both readable and settable, while others are read-only.

STA_PLL (read-write)
Enable phase-locked loop (PLL) updates via ADJ_OFFSET.

STA_PPSFREQ (read-write)
Enable PPS (pulse-per-second) frequency discipline.

STA_PPSTIME (read-write)
Enable PPS time discipline.

STA_FLL (read-write)
Select frequency-locked loop (FLL) mode.

STA_INS (read-write)
Insert a leap second after the last second of the UTC day, thus extending the last minute of the
day by one second. Leap-second insertion will occur each day, so long as this flag remains
set.

STA_DEL (read-write)
Delete a leap second at the last second of the UTC day. Leap second deletion will occur each
day, so long as this flag remains set.

STA_UNSYNC (read-write)
Clock unsynchronized.

STA_FREQHOLD (read-write)
Hold frequency. Normally adjustments made via ADJ_OFFSET result in dampened fre-
quency adjustments also being made. So a single call corrects the current offset, but as offsets
in the same direction are made repeatedly, the small frequency adjustments will accumulate to
fix the long-term skew.

This flag prevents the small frequency adjustment from being made when correcting for an
ADJ_OFFSET value.

STA_PPSSIGNAL (read-only)
A valid PPS (pulse-per-second) signal is present.

STA_PPSJITTER (read-only)
PPS signal jitter exceeded.

STA_PPSWANDER (read-only)
PPS signal wander exceeded.

STA_PPSERROR (read-only)
PPS signal calibration error.

STA_CLOCKERR (read-only)
Clock hardware fault.

STA_NANO (read-only; since Linux 2.6.26)
Resolution (0 = microsecond, 1 = nanoseconds). Set via ADJ_NANO, cleared via ADJ_MI-
CRO.

STA_MODE (since Linux 2.6.26)
Mode (0 = Phase Locked Loop, 1 = Frequency Locked Loop).

STA_CLK (read-only; since Linux 2.6.26)
Clock source (0 = A, 1 = B); currently unused.

Attempts to set read-only status bits are silently ignored.

clock_adjtime ()
The clock_adjtime() system call (added in Linux 2.6.39) behaves like adjtimex() but takes an addi-
tional clk_id argument to specify the particular clock on which to act.

Linux man-pages 6.7 2023-10-31 3

adjtimex(2) System Calls Manual adjtimex(2)

ntp_adjtime ()
The ntp_adjtime() library function (described in the NTP "Kernel Application Program API", KAPI)
is a more portable interface for performing the same task as adjtimex(). Other than the following
points, it is identical to adjtimex():

» The constants used in modes are prefixed with "MOD_" rather than "ADJ_", and have the same suf-
fixes (thus, MOD_OFFSET, MOD_FREQUENCY, and so on), other than the exceptions noted in
the following points.

* MOD_CLKA is the synonym for ADJ_OFFSET_SINGLESHOT.

« MOD_CLKB is the synonym for ADJ_TICK.

e The is no synonym for ADJ_OFFSET_SS_READ, which is not described in the KAPI.
RETURN VALUE

On success, adjtimex() and ntp_adjtime() return the clock state; that is, one of the following values:

TIME_OK Clock synchronized, no leap second adjustment pending.

TIME_INS Indicates that a leap second will be added at the end of the UTC day.

TIME_DEL Indicates that a leap second will be deleted at the end of the UTC day.

TIME_OOP Insertion of a leap second is in progress.

TIME_WAIT
A leap-second insertion or deletion has been completed. This value will be returned un-
til the next ADJ_STATUS operation clears the STA_INS and STA_DEL flags.

TIME_ERROR
The system clock is not synchronized to a reliable server. This value is returned when
any of the following holds true:

e Either STA_UNSYNC or STA_CLOCKERR is set.

e STA_PPSSIGNAL is clear and either STA_PPSFREQ or STA_PPSTIME is set.

e STA PPSTIME and STA_PPSJITTER are both set.

» STA PPSFREQ is set and either STA_PPSWANDER or STA_PPSJITTER is set.

The symbolic name TIME_BAD is a synonym for TIME_ERROR, provided for back-
ward compatibility.

Note that starting with Linux 3.4, the call operates asynchronously and the return value usually will not
reflect a state change caused by the call itself.

On failure, these calls return —1 and set errno to indicate the error.

ERRORS
EFAULT
buf does not point to writable memory.

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.freq to a value outside the range (—33554432, +33554432).

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.offset to a value outside the permitted range. Before Linux
2.0, the permitted range was (-131072, +131072). From Linux 2.0 onwards, the permitted
range was (—512000, +512000).

EINVAL
An attempt was made to set buf.status to a value other than those listed above.

EINVAL
The clk_id given to clock_adjtime() is invalid for one of two reasons. Either the System-V
style hard-coded positive clock ID value is out of range, or the dynamic clk_id does not refer
to a valid instance of a clock object. See clock_gettime(2) for a discussion of dynamic clocks.

EINVAL
An attempt was made to set buf.tick to a value outside the range 900000/HZ to 1100000/HZ,
where HZ is the system timer interrupt frequency.

Linux man-pages 6.7 2023-10-31 4

adjtimex(2) System Calls Manual adjtimex(2)

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic clk_id has disap-
peared after its character device was opened. See clock_gettime(2) for a discussion of dy-
namic clocks.

EOPNOTSUPP
The given clk_id does not support adjustment.

EPERM
buf.modes is neither 0 nor ADJ_OFFSET _SS_READ, and the caller does not have sufficient
privilege. Under Linux, the CAP_SYS_TIME capability is required.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
ntp_adjtime() Thread safety | MT-Safe

STANDARDS
adjtimex()
clock_adjtime()

Linux.

The preferred API for the NTP daemon is ntp_adjtime().

NOTES
In struct timex, freq, ppsfreq, and stabil are ppm (parts per million) with a 16-bit fractional part, which
means that a value of 1 in one of those fields actually means 2°-16 ppm, and 2"16=65536 is 1 ppm.
This is the case for both input values (in the case of freq) and output values.

The leap-second processing triggered by STA_INS and STA_DEL is done by the kernel in timer con-
text. Thus, it will take one tick into the second for the leap second to be inserted or deleted.

SEE ALSO
clock_gettime(2), clock_settime(2), settimeofday(2), adjtime(3), ntp_gettime(3), capabilities(7), time(7),
adjtimex(8), hwclock(8)

NTP "Kernel Application Program Interface"

Linux man-pages 6.7 2023-10-31 5

alarm(2) System Calls Manual alarm(2)

NAME

alarm - set an alarm clock for delivery of a signal
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

DESCRIPTION
alarm() arranges for a SIGALRM signal to be delivered to the calling process in seconds seconds.

If seconds is zero, any pending alarm is canceled.
In any event any previously set alarm() is canceled.

RETURN VALUE
alarm() returns the number of seconds remaining until any previously scheduled alarm was due to be
delivered, or zero if there was no previously scheduled alarm.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
alarm() and setitimer(2) share the same timer; calls to one will interfere with use of the other.

Alarms created by alarm() are preserved across execve(2) and are not inherited by children created via
fork(2).
sleep(3) may be implemented using SIGALRM; mixing calls to alarm() and sleep(3) is a bad idea.

Scheduling delays can, as ever, cause the execution of the process to be delayed by an arbitrary amount
of time.

SEE ALSO
gettimeofday(2), pause(2), select(2), setitimer(2), sigaction(2), signal(2), timer_create(2), timerfd_cre-
ate(2), sleep(3), time(7)

Linux man-pages 6.7 2023-10-31 1

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

NAME
alloc_hugepages, free_hugepages — allocate or free huge pages

SYNOPSIS
void *syscall(SYS_alloc_hugepages, int key, void addr[.len], size_t len,
int prot, int flag);
int syscall(SYS_free_hugepages, void *addr);

Note: glibc provides no wrappers for these system calls, necessitating the use of syscall(2).

DESCRIPTION
The system calls alloc_hugepages() and free_hugepages() were introduced in Linux 2.5.36 and re-
moved again in Linux 2.5.54. They existed only on i386 and ia64 (when built with CON-
FIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers exist, but the calls fail with the error
ENOSYS.

On 1386 the memory management hardware knows about ordinary pages (4 KiB) and huge pages (2 or
4 MiB). Similarly ia64 knows about huge pages of several sizes. These system calls serve to map huge
pages into the process’s memory or to free them again. Huge pages are locked into memory, and are
not swapped.

The key argument is an identifier. When zero the pages are private, and not inherited by children.
When positive the pages are shared with other applications using the same key, and inherited by child
processes.

The addr argument of free_hugepages() tells which page is being freed: it was the return value of a
call to alloc_hugepages(). (The memory is first actually freed when all users have released it.) The
addr argument of alloc_hugepages() is a hint, that the kernel may or may not follow. Addresses must
be properly aligned.

The len argument is the length of the required segment. It must be a multiple of the huge page size.

The prot argument specifies the memory protection of the segment. It is one of PROT_READ,
PROT_WRITE, PROT_EXEC.

The flag argument is ignored, unless key is positive. In that case, if flag is IPC_CREAT, then a new
huge page segment is created when none with the given key existed. If this flag is not set, then
ENOENT is returned when no segment with the given key exists.

RETURN VALUE
On success, alloc_hugepages() returns the allocated virtual address, and free_hugepages() returns
zero. On error, =1 is returned, and errno is set to indicate the error.

ERRORS
ENOSYS
The system call is not supported on this kernel.

FILES
/proc/sys/ivm/nr_hugepages
Number of configured hugetlb pages. This can be read and written.

/proc/meminfo
Gives info on the number of configured hugetlb pages and on their size in the three variables
HugePages_Total, HugePages_Free, Hugepagesize.

STANDARDS
Linux on Intel processors.

HISTORY
These system calls are gone; they existed only in Linux 2.5.36 through to Linux 2.5.54.

NOTES
Now the hugetlbfs filesystem can be used instead. Memory backed by huge pages (if the CPU supports
them) is obtained by using mmap(2) to map files in this virtual filesystem.

The maximal number of huge pages can be specified using the hugepages= boot parameter.

Linux man-pages 6.7 2023-10-31 1

arch_prctl(2) System Calls Manual arch_prctl(2)

NAME

arch_prctl — set architecture-specific thread state
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <asm/prctl.h> /* Definition of ARCH_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_arch_prectl, int op, unsigned long addr);

int syscall(SYS_arch_prectl, int op, unsigned long *addr);

Note: glibc provides no wrapper for arch_prctl(), necessitating the use of syscall(2).
DESCRIPTION

arch_prectl() sets architecture-specific process or thread state. op selects an operation and passes argu-
ment addr to it; addr is interpreted as either an unsigned long for the "set" operations, or as an un-
signed long *, for the "get" operations.

Subfunctions for both x86 and x86-64 are:

ARCH_SET_CPUID (since Linux 4.12)

Enable (addr !'=0) or disable (addr == Q) the cpuid instruction for the calling thread. The in-
struction is enabled by default. If disabled, any execution of a cpuid instruction will instead
generate a SIGSEGV signal. This feature can be used to emulate cpuid results that differ
from what the underlying hardware would have produced (e.g., in a paravirtualization setting).

The ARCH_SET_CPUID setting is preserved across fork(2) and clone(2) but reset to the de-
fault (i.e., cpuid enabled) on execve(2).

ARCH_GET_CPUID (since Linux 4.12)

Return the setting of the flag manipulated by ARCH_SET_CPUID as the result of the system
call (1 for enabled, O for disabled). addr is ignored.

Subfunctions for x86-64 only are:
ARCH_SET_FS
Set the 64-bit base for the FS register to addr.

ARCH_GET _FS

Return the 64-bit base value for the FS register of the calling thread in the unsigned long
pointed to by addr.

ARCH_SET_GS
Set the 64-bit base for the GS register to addr.

ARCH_GET_GS

Return the 64-bit base value for the GS register of the calling thread in the unsigned long
pointed to by addr.

RETURN VALUE
On success, arch_prctl() returns 0; on error, =1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
addr points to an unmapped address or is outside the process address space.
EINVAL
op is not a valid operation.
ENODEV

ARCH_SET_CPUID was requested, but the underlying hardware does not support CPUID
faulting.

EPERM
addr is outside the process address space.

Linux man-pages 6.7 2024-03-03 1

arch_prctl(2) System Calls Manual arch_prctl(2)

STANDARDS
Linux/x86-64.

NOTES
arch_prectl() is supported only on Linux/x86-64 for 64-bit programs currently.

The 64-bit base changes when a new 32-bit segment selector is loaded.
ARCH_SET_GS is disabled in some kernels.

Context switches for 64-bit segment bases are rather expensive. As an optimization, if a 32-bit TLS
base address is used, arch_prctl() may use a real TLS entry as if set_thread_area(2) had been called,
instead of manipulating the segment base register directly. Memory in the first 2 GB of address space
can be allocated by using mmap(2) with the MAP_32BIT flag.

Because of the aforementioned optimization, using arch_prctl() and set_thread area(2) in the same
thread is dangerous, as they may overwrite each other’s TLS entries.

FS may be already used by the threading library. Programs that use ARCH_SET_FS directly are very
likely to crash.

SEE ALSO
mmap(2), modify_ldt(2), prctl(2), set_thread_area(2)

AMD X86-64 Programmer’s manual

Linux man-pages 6.7 2024-03-03 2

bdflush(2) System Calls Manual bdflush(2)

NAME
bdflush - start, flush, or tune buffer-dirty-flush daemon

SYNOPSIS
#include <sys/kdaemon.h>

[[deprecated]] int bdflush(int func, long *address);
[[deprecated]] int bdflush(int func, long data);

DESCRIPTION
Note: Since Linux 2.6, this system call is deprecated and does nothing. It is likely to disappear alto-
gether in a future kernel release. Nowadays, the task performed by bdflush() is handled by the kernel
pdflush thread.

bdflush() starts, flushes, or tunes the buffer-dirty-flush daemon. Only a privileged process (one with
the CAP_SYS_ADMIN capability) may call bdflush().

If func is negative or 0, and no daemon has been started, then bdflush() enters the daemon code and
never returns.

If func is 1, some dirty buffers are written to disk.

If func is 2 or more and is even (low bit is 0), then address is the address of a long word, and the tun-
ing parameter numbered (func—2)/2 is returned to the caller in that address.

If func is 3 or more and is odd (low bit is 1), then data is a long word, and the kernel sets tuning para-
meter numbered (func-3)/2 to that value.

The set of parameters, their values, and their valid ranges are defined in the Linux kernel source file
fs/buffer.c.

RETURN VALUE
If func is negative or 0 and the daemon successfully starts, bdflush() never returns. Otherwise, the re-
turn value is 0 on success and —1 on failure, with errno set to indicate the error.

ERRORS
EBUSY
An attempt was made to enter the daemon code after another process has already entered.
EFAULT
address points outside your accessible address space.
EINVAL
An attempt was made to read or write an invalid parameter number, or to write an invalid
value to a parameter.
EPERM
Caller does not have the CAP_SYS_ADMIN capability.
STANDARDS
Linux.
HISTORY
Since glibc 2.23, glibc no longer supports this obsolete system call.
SEE ALSO

sync(1), fsync(2), sync(2)

Linux man-pages 6.7 2023-10-31 1

bind(2) System Calls Manual bind(2)

NAME

bind — bind a name to a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
When a socket is created with socket(2), it exists in a name space (address family) but has no address
assigned to it. bind() assigns the address specified by addr to the socket referred to by the file descrip-
tor sockfd. addrlen specifies the size, in bytes, of the address structure pointed to by addr. Tradition-
ally, this operation is called “assigning a name to a socket”.

It is normally necessary to assign a local address using bind() before a SOCK_STREAM socket may
receive connections (see accept(2)).

The rules used in name binding vary between address families. Consult the manual entries in Section 7
for detailed information. For AF_INET, see ip(7); for AF_INET®6, see ipv6(7); for AF_UNIX, see
unix(7); for AF_APPLETALK, see ddp(7); for AF_PACKET, see packet(7); for AF_X25, see x25(7);
and for AF_NETLINK, see netlink(7).

The actual structure passed for the addr argument will depend on the address family. The sockaddr
structure is defined as something like:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];
}

The only purpose of this structure is to cast the structure pointer passed in addr in order to avoid com-
piler warnings. See EXAMPLES below.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EACCES
The address is protected, and the user is not the superuser.

EADDRINUSE
The given address is already in use.

EADDRINUSE
(Internet domain sockets) The port number was specified as zero in the socket address struc-
ture, but, upon attempting to bind to an ephemeral port, it was determined that all port num-
bers in the ephemeral port range are currently in use. See the discussion of
Iproc/sys/net/ipv4/ip_local_port_range ip(7).

EBADF
sockfd is not a valid file descriptor.

EINVAL
The socket is already bound to an address.

EINVAL
addrlen is wrong, or addr is not a valid address for this socket’s domain.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EACCES
Search permission is denied on a component of the path prefix. (See also path_resolution(7).)

Linux man-pages 6.7 2023-10-31 1

bind(2) System Calls Manual bind(2)

EADDRNOTAVAIL
A nonexistent interface was requested or the requested address was not local.

EFAULT
addr points outside the user’s accessible address space.
ELOOP
Too many symbolic links were encountered in resolving addr.
ENAMETOOLONG
addr is too long.
ENOENT
A component in the directory prefix of the socket pathname does not exist.
ENOMEM
Insufficient kernel memory was available.
ENOTDIR
A component of the path prefix is not a directory.
EROFS
The socket inode would reside on a read-only filesystem.
STANDARDS
POSIX.1-2008.
HISTORY
POSIX.1-2001, SVr4, 4.4BSD (bind() first appeared in 4.2BSD).
BUGS
The transparent proxy options are not described.
EXAMPLES

An example of the use of bind() with Internet domain sockets can be found in getaddrinfo(3).

The following example shows how to bind a stream socket in the UNIX (AF_UNIX) domain, and ac-
cept connections:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

#define MY_SOCK_PATH ''/somepath™
#define LISTEN_BACKLOG 50

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int

main(void)

{
int sfd, cfd;
socklen_t peer_addr_size;

struct sockaddr_un my_addr, peer_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)
handle_error(*'socket™™);

memset(&my_addr, 0, sizeof(my_addr));

my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH,

Linux man-pages 6.7 2023-10-31 2

bind (2)

SEE ALSO

}

System Calls Manual bind(2)

sizeof(my_addr.sun_path) - 1);

if (bind(sfd, (struct sockaddr *) &my_ addr,
sizeof(my_addr)) == -1)
handle_error(*'bind™);

if (listen(sfd, LISTEN_BACKLOG) == -1)
handle_error('listen™);

/* Now we can accept incoming connections one
at a time using accept(2). */

peer_addr_size = sizeof(peer_addr);
cfd = accept(sfd, (struct sockaddr *) &peer_addr,
&peer_addr_size);
if (cfd == -1)
handle_error(*'accept™);

/* Code to deal with incoming connection(s)... */

if (close(sfd) == -1)
handle_error(*'close™);

if (unlink(MY_SOCK_PATH) == -1)
handle_error('unlink™™);

accept(2), connect(2), getsockname(2), listen(2), socket(2), getaddrinfo(3), getifaddrs(3), ip(7), ipv6(7),
path_resolution(7), socket(7), unix(7)

Linux man-pages 6.7 2023-10-31 3

bpf (2) System Calls Manual bpf (2)

NAME
bpf — perform a command on an extended BPF map or program

SYNOPSIS
#include <linux/bpf.h>

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

DESCRIPTION
The bpf() system call performs a range of operations related to extended Berkeley Packet Filters. Ex-
tended BPF (or eBPF) is similar to the original (“classic") BPF (cBPF) used to filter network packets.
For both cBPF and eBPF programs, the kernel statically analyzes the programs before loading them, in
order to ensure that they cannot harm the running system.

eBPF extends cBPF in multiple ways, including the ability to call a fixed set of in-kernel helper func-
tions (via the BPF_CALL opcode extension provided by eBPF) and access shared data structures such
as eBPF maps.

Extended BPF Design/Architecture
eBPF maps are a generic data structure for storage of different data types. Data types are generally
treated as binary blobs, so a user just specifies the size of the key and the size of the value at map-cre-
ation time. In other words, a key/value for a given map can have an arbitrary structure.

A user process can create multiple maps (with key/value-pairs being opaque bytes of data) and access
them via file descriptors. Different eBPF programs can access the same maps in parallel. It’s up to the
user process and eBPF program to decide what they store inside maps.

There’s one special map type, called a program array. This type of map stores file descriptors referring
to other eBPF programs. When a lookup in the map is performed, the program flow is redirected in-
place to the beginning of another eBPF program and does not return back to the calling program. The
level of nesting has a fixed limit of 32, so that infinite loops cannot be crafted. At run time, the pro-
gram file descriptors stored in the map can be modified, so program functionality can be altered based
on specific requirements. All programs referred to in a program-array map must have been previously
loaded into the kernel via bpf(). If a map lookup fails, the current program continues its execution.
See BPF_MAP_TYPE_PROG_ARRAY below for further details.

Generally, eBPF programs are loaded by the user process and automatically unloaded when the process
exits. In some cases, for example, tc-bpf (8), the program will continue to stay alive inside the kernel
even after the process that loaded the program exits. In that case, the tc subsystem holds a reference to
the eBPF program after the file descriptor has been closed by the user-space program. Thus, whether a
specific program continues to live inside the kernel depends on how it is further attached to a given ker-
nel subsystem after it was loaded via bpf().

Each eBPF program is a set of instructions that is safe to run until its completion. An in-kernel verifier
statically determines that the eBPF program terminates and is safe to execute. During verification, the
kernel increments reference counts for each of the maps that the eBPF program uses, so that the at-
tached maps can’t be removed until the program is unloaded.

eBPF programs can be attached to different events. These events can be the arrival of network packets,
tracing events, classification events by network queueing disciplines (for eBPF programs attached to a
tc(8) classifier), and other types that may be added in the future. A new event triggers execution of the
eBPF program, which may store information about the event in eBPF maps. Beyond storing data,
eBPF programs may call a fixed set of in-kernel helper functions.

The same eBPF program can be attached to multiple events and different eBPF programs can access
the same map:

tracing tracing tracing packet packet packet
event A event B event C on ethO on ethl on eth2
| | | | | n
| | | | v |
—-—> tracing <—- tracing socket tc ingress tc egress
prog_1 prog_2 prog_3 classifier action
1 | | prog_4 prog_5
- -— I - | map_3 | |
map_1 map_2 —] map_4 |—

Linux man-pages 6.7 2024-03-18 1

bpf (2) System Calls Manual bpf (2)

Arguments
The operation to be performed by the bpf() system call is determined by the cmd argument. Each oper-
ation takes an accompanying argument, provided via attr, which is a pointer to a union of type bpf_attr
(see below). The unused fields and padding must be zeroed out before the call. The size argument is
the size of the union pointed to by attr.

The value provided in cmd is one of the following:

BPF_MAP_CREATE
Create a map and return a file descriptor that refers to the map. The close-on-exec file descrip-
tor flag (see fcntl(2)) is automatically enabled for the new file descriptor.

BPF_MAP_LOOKUP_ELEM
Look up an element by key in a specified map and return its value.

BPF_MAP_UPDATE_ELEM
Create or update an element (key/value pair) in a specified map.

BPF_MAP_DELETE_ELEM
Look up and delete an element by key in a specified map.

BPF_MAP_GET_NEXT_KEY
Look up an element by key in a specified map and return the key of the next element.

BPF_PROG_LOAD
Verify and load an eBPF program, returning a new file descriptor associated with the program.
The close-on-exec file descriptor flag (see fcntl(2)) is automatically enabled for the new file
descriptor.

The bpf_attr union consists of various anonymous structures that are used by different bpf()
commands:

union bpf _attr {
struct { /* Used by BPF_MAP_CREATE */

_u32 map_type;

_u32 key size; /* size of key in bytes */
. u32 value_size; /* size of value in bytes */
. u32 max_entries; /* maximum number of entries

in a map */

¥

struct { /* Used by BPF_MAP_* ELEM and BPF_MAP_GET_NEXT_KEY
commands */

. u32 map_Td;
__aligned_u64 key;
union {

__aligned_u64 value;
__aligned_u64 next_key;

}:
__u64 flags;
}:
struct { /* Used by BPF_PROG_LOAD */
_u32 prog_type;
. u32 insn_cnt;
__aligned_u64 insns; /* "const struct bpf_insn ** */
__aligned_u64 license; /* “const char ** */
_u32 log level; /* verbosity level of verifier */
. u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied "char **
buffer */
. u32 kern_version;

/* checked when prog_type=kprobe
(since Linux 4.1) */

Linux man-pages 6.7 2024-03-18 2

bpf (2) System Calls Manual bpf (2)

}:
} _ attribute ((aligned(8)));
eBPF maps
Maps are a generic data structure for storage of different types of data. They allow sharing of data be-
tween eBPF kernel programs, and also between kernel and user-space applications.

Each map type has the following attributes:
* type

* maximum number of elements

» key size in bytes

» value size in bytes

The following wrapper functions demonstrate how various bpf() commands can be used to access the
maps. The functions use the cmd argument to invoke different operations.

BPF_MAP_CREATE
The BPF_MAP_CREATE command creates a new map, returning a new file descriptor that
refers to the map.
int
bpf_create_map(enum bpf_map_type map_type,
unsigned int key size,
unsigned int value_size,
unsigned Int max_entries)

{
union bpf _attr attr = {
.map_type = map_type,
-key_size = key_size,
.value_size = value_size,
.max_entries = max_entries
}:
return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}

The new map has the type specified by map_type, and attributes as specified in key_size,
value_size, and max_entries. On success, this operation returns a file descriptor. On error, -1
is returned and errno is set to EINVAL, EPERM, or ENOMEM.

The key_size and value_size attributes will be used by the verifier during program loading to
check that the program is calling bpf_map_*_elem() helper functions with a correctly initial-
ized key and to check that the program doesn’t access the map element value beyond the spec-
ified value_size. For example, when a map is created with a key_size of 8 and the eBPF pro-
gram calls

bpf_map_lookup_elem(map_fd, fp - 4)
the program will be rejected, since the in-kernel helper function
bpf_map_lookup_elem(map_fd, void *key)

expects to read 8 bytes from the location pointed to by key, but the fp — 4 (where fp is the top
of the stack) starting address will cause out-of-bounds stack access.

Similarly, when a map is created with a value_size of 1 and the eBPF program contains

value = bpf_map_lookup elem(...);
*(u32 *) value = 1;

the program will be rejected, since it accesses the value pointer beyond the specified 1 byte
value_size limit.

Currently, the following values are supported for map_type:

enum bpf _map_type {
BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */

Linux man-pages 6.7 2024-03-18 3

bpf (2) System Calls Manual bpf (2)

BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_PROG_ARRAY,
BPF_MAP_TYPE_PERF_EVENT_ARRAY,
BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_PERCPU_ARRAY,
BPF_MAP_TYPE_STACK_TRACE,
BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH,
BPF_MAP_TYPE_LPM_TRIE,
BPF_MAP_TYPE_ARRAY_OF_MAPS,
BPF_MAP_TYPE_HASH_OF_MAPS,
BPF_MAP_TYPE_DEVMAP,
BPF_MAP_TYPE_SOCKMAP,
BPF_MAP_TYPE_CPUMAP,
BPF_MAP_TYPE_XSKMAP,
BPF_MAP_TYPE_SOCKHASH,
BPF_MAP_TYPE_CGROUP_STORAGE,
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
BPF_MAP_TYPE_QUEUE,
BPF_MAP_TYPE_STACK,

/* See /usr/include/linux/bpf_h for the full list. */

}:
map_type selects one of the available map implementations in the kernel. For all map types,

eBPF programs access maps with the same bpf map_lookup_elem() and bpf_map_up-
date_elem() helper functions. Further details of the various map types are given below.

BPF_MAP_LOOKUP_ELEM
The BPF_MAP_LOOKUP_ELEM command looks up an element with a given key in the
map referred to by the file descriptor fd.

int
bpf_lookup_elem(int fd, const void *key, void *value)
{
union bpf _attr attr = {
-map_fd = fd,
-key = ptr_to_u64(key),
-value = ptr_to_u64(value),
}:
return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));
}

If an element is found, the operation returns zero and stores the element’s value into value,
which must point to a buffer of value_size bytes.

If no element is found, the operation returns —1 and sets errno to ENOENT.

BPF_MAP_UPDATE_ELEM
The BPF_MAP_UPDATE_ELEM command creates or updates an element with a given
key/value in the map referred to by the file descriptor fd.
int
bpf_update_elem(int fd, const void *key, const void *value,
uint64_t flags)

{
union bpf _attr attr = {
-map_fd = fd,
-key = ptr_to_u64(key),
-value = ptr_to_u64(value),

Linux man-pages 6.7 2024-03-18 4

bpf (2) System Calls Manual bpf (2)

-flags = flags,

}:
return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));
}
The flags argument should be specified as one of the following:
BPF_ANY
Create a new element or update an existing element.
BPF_NOEXIST
Create a new element only if it did not exist.
BPF_EXIST

Update an existing element.

On success, the operation returns zero. On error, —1 is returned and errno is set to EINVAL,
EPERM, ENOMEM, or E2BIG. E2BIG indicates that the number of elements in the map
reached the max_entries limit specified at map creation time. EEXIST will be returned if
flags specifies BPF_NOEXIST and the element with key already exists in the map.
ENOENT will be returned if flags specifies BPF_EXIST and the element with key doesn’t
exist in the map.

BPF_MAP_DELETE_ELEM
The BPF_MAP_DELETE_ELEM command deletes the element whose key is key from the
map referred to by the file descriptor fd.

int
bpf_delete_elem(int fd, const void *key)
{
union bpf _attr attr = {
-map_fd = fd,
-key = ptr_to_u64(key),
};
return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));
}
On success, zero is returned. If the element is not found, —1 is returned and errno is set to
ENOENT

BPF_MAP_GET_NEXT_KEY
The BPF_MAP_GET_NEXT_KEY command looks up an element by key in the map re-
ferred to by the file descriptor fd and sets the next_key pointer to the key of the next element.
int
bpf_get_next_key(int fd, const void *key, void *next_key)
{
union bpf _attr attr = {
-map_*¥d fd,
-key ptr_to_u64(key),
-next_key = ptr_to_u64(next_key),

¥

return bpf(BPF_MAP_GET_NEXT_KEY, &attr, sizeof(attr));
}

If key is found, the operation returns zero and sets the next_key pointer to the key of the next
element. If key is not found, the operation returns zero and sets the next_key pointer to the key
of the first element. If key is the last element, —1 is returned and errno is set to ENOENT.
Other possible errno values are ENOMEM, EFAULT, EPERM, and EINVAL. This method
can be used to iterate over all elements in the map.

Linux man-pages 6.7 2024-03-18 5

bpf (2) System Calls Manual bpf (2)

close(map_fd)
Delete the map referred to by the file descriptor map_fd. When the user-space program that
created a map exits, all maps will be deleted automatically (but see NOTES).

eBPF map types
The following map types are supported:

BPF_MAP_TYPE_HASH
Hash-table maps have the following characteristics:

» Maps are created and destroyed by user-space programs. Both user-space and eBPF pro-
grams can perform lookup, update, and delete operations.

» The kernel takes care of allocating and freeing key/value pairs.

e The map_update_elem() helper will fail to insert new element when the max_entries
limit is reached. (This ensures that eBPF programs cannot exhaust memory.)

* map_update_elem() replaces existing elements atomically.
Hash-table maps are optimized for speed of lookup.

BPF_MAP_TYPE_ARRAY
Array maps have the following characteristics:

* Optimized for fastest possible lookup. In the future the verifier/JIT compiler may recog-
nize lookup() operations that employ a constant key and optimize it into constant pointer.
It is possible to optimize a non-constant key into direct pointer arithmetic as well, since
pointers and value_size are constant for the life of the eBPF program. In other words, ar-
ray_map_lookup_elem() may be ’inlined” by the verifier/JIT compiler while preserving
concurrent access to this map from user space.

« All array elements pre-allocated and zero initialized at init time
» The key is an array index, and must be exactly four bytes.
* map_delete_elem() fails with the error EINVAL, since elements cannot be deleted.

* map_update_elem() replaces elements in a nonatomic fashion; for atomic updates, a
hash-table map should be used instead. There is however one special case that can also be
used with arrays: the atomic built-in __sync_fetch_and_add() can be used on 32 and 64
bit atomic counters. For example, it can be applied on the whole value itself if it repre-
sents a single counter, or in case of a structure containing multiple counters, it could be
used on individual counters. This is quite often useful for aggregation and accounting of
events.

Among the uses for array maps are the following:

e As "global" eBPF variables: an array of 1 element whose key is (index) 0 and where the
value is a collection of ’global’ variables which eBPF programs can use to keep state be-
tween events.

» Aggregation of tracing events into a fixed set of buckets.
» Accounting of networking events, for example, number of packets and packet sizes.

BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)
A program array map is a special kind of array map whose map values contain only file de-
scriptors referring to other eBPF programs. Thus, both the key size and value_size must be
exactly four bytes. This map is used in conjunction with the bpf_tail_call() helper.

This means that an eBPF program with a program array map attached to it can call from ker-
nel side into

void bpf_tail_call(void *context, void *prog_map,
unsigned iInt index);
and therefore replace its own program flow with the one from the program at the given pro-
gram array slot, if present. This can be regarded as kind of a jump table to a different eBPF

program. The invoked program will then reuse the same stack. When a jump into the new
program has been performed, it won’t return to the old program anymore.

Linux man-pages 6.7 2024-03-18 6

bpf (2) System Calls Manual bpf (2)

If no eBPF program is found at the given index of the program array (because the map slot
doesn’t contain a valid program file descriptor, the specified lookup index/key is out of
bounds, or the limit of 32 nested calls has been exceed), execution continues with the current
eBPF program. This can be used as a fall-through for default cases.

A program array map is useful, for example, in tracing or networking, to handle individual
system calls or protocols in their own subprograms and use their identifiers as an individual
map index. This approach may result in performance benefits, and also makes it possible to
overcome the maximum instruction limit of a single eBPF program. In dynamic environ-
ments, a user-space daemon might atomically replace individual subprograms at run-time with
newer versions to alter overall program behavior, for instance, if global policies change.

eBPF programs
The BPF_PROG_L OAD command is used to load an eBPF program into the kernel. The return value
for this command is a new file descriptor associated with this eBPF program.

char bpf_log_buf[LOG_BUF_SI1ZE];

int

bpf_prog_load(enum bpf _prog_type type,
const struct bpf_insn *insns, int insn_cnt,
const char *license)

{
union bpf _attr attr = {
.prog_type = type,
-insns = ptr_to_u64(insns),
.insn_cnt = insn_cnt,
-license = ptr_to_u64(license),
-log buf = ptr_to_u64(bpf_log_buf),
-log_size = LOG_BUF_SIZE,
-log_level =1,
}:
return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}

prog_type is one of the available program types:

enum bpf _prog_type {

BPF_PROG_TYPE_UNSPEC, /* Reserve 0 as invalid
program type */

BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
BPF_PROG_TYPE_SCHED_ACT,
BPF_PROG_TYPE_TRACEPOINT,
BPF_PROG_TYPE_XDP,
BPF_PROG_TYPE_PERF_EVENT,
BPF_PROG_TYPE_CGROUP_SKB,
BPF_PROG_TYPE_CGROUP_SOCK,
BPF_PROG_TYPE_LWT_IN,
BPF_PROG_TYPE_LWT_OUT,
BPF_PROG_TYPE_LWT_XMIT,
BPF_PROG_TYPE_SOCK_OPS,
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_CGROUP_DEVICE,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_RAW_TRACEPOINT,
BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
BPF_PROG_TYPE_LWT_SEG6LOCAL,
BPF_PROG_TYPE_LIRC_MODEZ2,
BPF_PROG_TYPE_SK_REUSEPORT,

Linux man-pages 6.7 2024-03-18 7

bpf (2)

System Calls Manual bpf (2)

BPF_PROG_TYPE_FLOW_DISSECTOR,
/* See /usr/include/linux/bpf_h for the full list. */
}:
For further details of eBPF program types, see below.
The remaining fields of bpf_attr are set as follows:
e insns is an array of struct bpf_insn instructions.
e insn_cnt is the number of instructions in the program referred to by insns.

» license is a license string, which must be GPL compatible to call helper functions marked gpl_only.
(The licensing rules are the same as for kernel modules, so that also dual licenses, such as "Dual
BSD/GPL", may be used.)

» log_buf is a pointer to a caller-allocated buffer in which the in-kernel verifier can store the verifica-
tion log. This log is a multi-line string that can be checked by the program author in order to under-
stand how the verifier came to the conclusion that the eBPF program is unsafe. The format of the
output can change at any time as the verifier evolves.

» log_size size of the buffer pointed to by log_buf. If the size of the buffer is not large enough to
store all verifier messages, —1 is returned and errno is set to ENOSPC.

» log_level verbosity level of the verifier. A value of zero means that the verifier will not provide a
log; in this case, log_buf must be a null pointer, and log_size must be zero.

Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will unload the eBPF pro-
gram (but see NOTES).

Maps are accessible from eBPF programs and are used to exchange data between eBPF programs and
between eBPF programs and user-space programs. For example, eBPF programs can process various
events (like kprobe, packets) and store their data into a map, and user-space programs can then fetch
data from the map. Conversely, user-space programs can use a map as a configuration mechanism,
populating the map with values checked by the eBPF program, which then modifies its behavior on the
fly according to those values.

eBPF program types

The eBPF program type (prog_type) determines the subset of kernel helper functions that the program
may call. The program type also determines the program input (context)—the format of struct
bpf_context (which is the data blob passed into the eBPF program as the first argument).

For example, a tracing program does not have the exact same subset of helper functions as a socket fil-
ter program (though they may have some helpers in common). Similarly, the input (context) for a trac-
ing program is a set of register values, while for a socket filter it is a network packet.

The set of functions available to eBPF programs of a given type may increase in the future.
The following program types are supported:

BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)
Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTER is:
bpf_map_lookup_elem(map_fd, void *key)
/* look up key in a map_fd */
bpf_map_update_elem(map_fd, void *key, void *value)
/* update key/value */
bpf_map_delete _elem(map_fd, void *key)
/* delete key in a map_fd */

The bpf_context argument is a pointer to a struct __sk_buff.

BPF_PROG_TYPE_KPROBE (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)
[To be documented]

Linux man-pages 6.7 2024-03-18 8

bpf (2) System Calls Manual bpf (2)

Events
Once a program is loaded, it can be attached to an event. Various kernel subsystems have different
ways to do so.

Since Linux 3.19, the following call will attach the program prog_fd to the socket sockfd, which was
created by an earlier call to socket(2):

setsockopt(sockfd, SOL_SOCKET, SO _ATTACH_BPF,
&prog_T¥d, sizeof(prog_fd));

Since Linux 4.1, the following call may be used to attach the eBPF program referred to by the file de-
scriptor prog_fd to a perf event file descriptor, event fd, that was created by a previous call to
perf_event_open(2):

ioctl(event_fd, PERF_EVENT_I10C_SET_BPF, prog_fd);

RETURN VALUE
For a successful call, the return value depends on the operation:

BPF_MAP_CREATE
The new file descriptor associated with the eBPF map.

BPF_PROG_LOAD
The new file descriptor associated with the eBPF program.

All other commands
Zero.

On error, =1 is returned, and errno is set to indicate the error.

ERRORS
E2BIG The eBPF program is too large or a map reached the max_entries limit (maximum number of
elements).

EACCES
For BPF_PROG_L OAD, even though all program instructions are valid, the program has
been rejected because it was deemed unsafe. This may be because it may have accessed a dis-
allowed memory region or an uninitialized stack/register or because the function constraints
don’t match the actual types or because there was a misaligned memory access. In this case, it
is recommended to call bpf() again with log_level = 1 and examine log_buf for the specific
reason provided by the verifier.

EAGAIN
For BPF_PROG_LOAD, indicates that needed resources are blocked. This happens when
the verifier detects pending signals while it is checking the validity of the bpf program. In this
case, just call bpf() again with the same parameters.

EBADF
fd is not an open file descriptor.
EFAULT
One of the pointers (key or value or log_buf or insns) is outside the accessible address space.
EINVAL
The value specified in cmd is not recognized by this kernel.
EINVAL
For BPF_MAP_CREATE, either map_type or attributes are invalid.
EINVAL

For BPF_MAP_* ELEM commands, some of the fields of union bpf_attr that are not used
by this command are not set to zero.

EINVAL
For BPF_PROG_LOAD, indicates an attempt to load an invalid program. eBPF programs
can be deemed invalid due to unrecognized instructions, the use of reserved fields, jumps out
of range, infinite loops or calls of unknown functions.

Linux man-pages 6.7 2024-03-18 9

bpf (2) System Calls Manual bpf (2)

ENOENT
For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indicates that the ele-
ment with the given key was not found.

ENOMEM
Cannot allocate sufficient memory.

EPERM
The call was made without sufficient privilege (without the CAP_SYS_ADMIN capability).

STANDARDS
Linux.

HISTORY
Linux 3.18.

NOTES
Prior to Linux 4.4, all bpf() commands require the caller to have the CAP_SYS_ADMIN capability.
From Linux 4.4 onwards, an unprivileged user may create limited programs of type
BPF_PROG_TYPE_SOCKET_FILTER and associated maps. However they may not store kernel
pointers within the maps and are presently limited to the following helper functions:

e get _random

e get_smp_processor_id
e tail_call

» ktime_get_ns

Unprivileged access may be blocked by writing the value 1 to the file /proc/sys/kernel/unprivi-
leged_bpf_disabled.

eBPF objects (maps and programs) can be shared between processes. For example, after fork(2), the
child inherits file descriptors referring to the same eBPF objects. In addition, file descriptors referring
to eBPF objects can be transferred over UNIX domain sockets. File descriptors referring to eBPF ob-
jects can be duplicated in the usual way, using dup(2) and similar calls. An eBPF object is deallocated
only after all file descriptors referring to the object have been closed.

eBPF programs can be written in a restricted C that is compiled (using the clang compiler) into eBPF
bytecode. Various features are omitted from this restricted C, such as loops, global variables, variadic
functions, floating-point numbers, and passing structures as function arguments. Some examples can
be found in the samples/bpf/*_kern.c files in the kernel source tree.

The kernel contains a just-in-time (JIT) compiler that translates eBPF bytecode into native machine
code for better performance. Before Linux 4.15, the JIT compiler is disabled by default, but its opera-
tion can be controlled by writing one of the following integer strings to the file
Iproc/sys/net/core/bpf_jit_enable:

0 Disable JIT compilation (default).
1 Normal compilation.
2 Debugging mode. The generated opcodes are dumped in hexadecimal into the kernel log.

These opcodes can then be disassembled using the program tools/net/bpf_jit_disasm.c pro-
vided in the kernel source tree.

Since Linux 4.15, the kernel may be configured with the CONFIG_BPF_JIT_ALWAYS_ON option.
In this case, the JIT compiler is always enabled, and the bpf_jit_enable is initialized to 1 and is im-
mutable. (This kernel configuration option was provided as a mitigation for one of the Spectre attacks
against the BPF interpreter.)

The JIT compiler for eBPF is currently available for the following architectures:

e X86-64 (since Linux 3.18; cBPF since Linux 3.0);

e ARMS32 (since Linux 3.18; cBPF since Linux 3.4);

» SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);
* ARM-64 (since Linux 3.18);

e 5390 (since Linux 4.1; cBPF since Linux 3.7);

Linux man-pages 6.7 2024-03-18 10

bpf (2)

System Calls Manual bpf (2)

» PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);
» SPARC 64 (since Linux 4.12);

e x86-32 (since Linux 4.18);

* MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);

* riscv
EXAMPLES

(since Linux 5.1).

/* bpf+sockets example:

1.
2.

3.
4.

X %k F X

*/
int
main(i

{

create array map of 256 elements

load program that counts number of packets received

rO = skb—>data[ETH_HLEN + offsetof(struct iphdr, protocol)]
map[rO]++

attach prog_fd to raw socket via setsockopt()

print number of received TCP/UDP packets every second

nt argc, char *argv[])

int sock, map_fd, prog_fd, key;
long long value = 0, tcp_cnt, udp_cnt;

map_Tfd = bpf_create _map(BPF_MAP_TYPE_ARRAY, sizeof(key),

sizeof(value), 256);

if (map_fd < 0) {

}

printf("*failed to create map "%s"\n", strerror(errno));
/* likely not run as root */
return 1;

struct bpf_insn prog[] = {

X

BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* r6 =rl */
BPF_LD _ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)),
/* r0 = ip—>proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),
/* *(u32 *)(fp - 4) = r0 */

BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /*r2 = fp */
BPF_ALU64_IMM(BPF_ADD, BPF_REG 2, -4), /*r2=r2-4%*
BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* rl = map_fd */

BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),

/* rO = map_lookup(rl, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0O, 0, 2),

/* if (rO0 == 0) goto pc+2 */
BPF_MOV64_IMM(BPF_REG_1, 1), /*rl =1%*/
BPF_XADD(BPF_DW, BPF_REG_O, BPF_REG_1, 0, 0),

/* lock *(u64 *) r0 += rl1 */
BPF_MOV64_IMM(BPF_REG_0O, 0), /* r0 =0 */
BPF_EXIT_INSNQ), /* return rO */

prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog,

sizeof(prog) / sizeof(prog[0]), "GPL™);

sock = open_raw_sock(l1o™);

assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd,

sizeof(prog_fd)) == 0);

for (;) {

Linux man-pages

key = IPPROTO_TCP;

6.7 2024-03-18 11

bpf (2) System Calls Manual bpf (2)

assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);
key = IPPROTO_UDP;
assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);
printfF("'TCP %11d UDP %l1d packets\n', tcp_cnt, udp_cnt);
sleep(1);

}

return O;
3

Some complete working code can be found in the samples/bpf directory in the kernel source tree.

SEE ALSO
seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf (8)

Both classic and extended BPF are explained in the kernel source file Documentation/networking/fil-
ter.txt.

Linux man-pages 6.7 2024-03-18 12

brk(2) System Calls Manual brk(2)

NAME

brk, sbrk — change data segment size
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

brk(), sbrk():
Since glibc 2.19:
_DEFAULT_SOURCE
|| (CKOPEN_SOURCE >=500) &&
1 (_POSIX_C_SOURCE >=200112L))
From glibc 2.12 to glibc 2.19:
_BSD_SOURCE || _SVID_SOURCE
|| (CKOPEN_SOURCE >=500) &&
1 (_POSIX_C_SOURCE >=200112L))
Before glibc 2.12:
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
brk() and sbrk() change the location of the program break, which defines the end of the process’s data
segment (i.e., the program break is the first location after the end of the uninitialized data segment). In-
creasing the program break has the effect of allocating memory to the process; decreasing the break
deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that value is reasonable, the
system has enough memory, and the process does not exceed its maximum data size (see setrlimit(2)).

sbrk() increments the program’s data space by increment bytes. Calling sbrk() with an increment of 0
can be used to find the current location of the program break.

RETURN VALUE
On success, brk() returns zero. On error, -1 is returned, and errno is set to ENOMEM.

On success, sbrk() returns the previous program break. (If the break was increased, then this value is a
pointer to the start of the newly allocated memory). On error, (void *) —1 is returned, and errno is set
to ENOMEM.

STANDARDS
None.

HISTORY
4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
Avoid using brk() and sbrk(): the malloc(3) memory allocation package is the portable and comfort-
able way of allocating memory.

Various systems use various types for the argument of sbrk(). Common are int, ssize_t, ptrdiff t,
intptr_t.

C library/kernel differences
The return value described above for brk() is the behavior provided by the glibc wrapper function for
the Linux brk() system call. (On most other implementations, the return value from brk() is the same;
this return value was also specified in SUSv2.) However, the actual Linux system call returns the new
program break on success. On failure, the system call returns the current break. The glibc wrapper
function does some work (i.e., checks whether the new break is less than addr) to provide the 0 and -1
return values described above.

On Linux, sbrk() is implemented as a library function that uses the brk() system call, and does some
internal bookkeeping so that it can return the old break value.

Linux man-pages 6.7 2023-10-31 1

brk(2) System Calls Manual brk(2)

SEE ALSO
execve(2), getrlimit(2), end(3), malloc(3)

Linux man-pages 6.7 2023-10-31 2

cacheflush(2) System Calls Manual cacheflush(2)

NAME

cacheflush — flush contents of instruction and/or data cache
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/cachectl.h>
int cacheflush(void addr[.nbytes], int nbytes, int cache);
Note: On some architectures, there is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
cacheflush() flushes the contents of the indicated cache(s) for the user addresses in the range addr to
(addr+nbytes—1). cache may be one of:

ICACHE
Flush the instruction cache.

DCACHE
Write back to memory and invalidate the affected valid cache lines.

BCACHE
Same as (ICACHE|DCACHE).

RETURN VALUE
cacheflush() returns 0 on success. On error, it returns —1 and sets errno to indicate the error.

ERRORS
EFAULT
Some or all of the address range addr to (addr+nbytes—1) is not accessible.
EINVAL
cache is not one of ICACHE, DCACHE, or BCACHE (but see BUGS).
VERSIONS

cacheflush() should not be used in programs intended to be portable. On Linux, this call first appeared
on the MIPS architecture, but nowadays, Linux provides a cacheflush() system call on some other ar-
chitectures, but with different arguments.

Architecture-specific variants
glibc provides a wrapper for this system call, with the prototype shown in SYNOPSIS, for the follow-
ing architectures: ARC, CSKY, MIPS, and NIOS2.

On some other architectures, Linux provides this system call, with different arguments:

M68K:
int cacheflush(unsigned long addr, int scope, int cache,
unsigned long len);

SH:
int cacheflush(unsigned long addr, unsigned long len, int op);

NDS32:
int cacheflush(unsigned int start, unsigned int end, int cache);

On the above architectures, glibc does not provide a wrapper for this system call; call it using
syscall(2).

GCC alternative
Unless you need the finer grained control that this system call provides, you probably want to use the
GCC built-in function __builtin___clear_cache(), which provides a portable interface across platforms
supported by GCC and compatible compilers:

void __ builtin clear_cache(void *begin, void *end);
On platforms that don’t require instruction cache flushes, __ builtin___clear_cache() has no effect.

Note: On some GCC-compatible compilers, the prototype for this built-in function uses char * instead
of void * for the parameters.

Linux man-pages 6.7 2023-10-31 1

cacheflush(2) System Calls Manual cacheflush(2)

STANDARDS
Historically, this system call was available on all MIPS UNIX variants including RISC/os, IRIX, Ultrix,
NetBSD, OpenBSD, and FreeBSD (and also on some non-UNIX MIPS operating systems), so that the
existence of this call in MIPS operating systems is a de-facto standard.

BUGS
Linux kernels older than Linux 2.6.11 ignore the addr and nbytes arguments, making this function
fairly expensive. Therefore, the whole cache is always flushed.

This function always behaves as if BCACHE has been passed for the cache argument and does not do
any error checking on the cache argument.

Linux man-pages 6.7 2023-10-31 2

capget(2) System Calls Manual capget(2)

NAME

capget, capset — set/get capabilities of thread(s)
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/capability.h> /* Definition of CAP_* and

_LINUX_CAPABILITY_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_capget, cap_user_header _t hdrp,
cap_user_data_t datap);

int syscall(SYS_capset, cap_user_header_t hdrp,
const cap_user_data_t datap);

Note: glibc provides no wrappers for these system calls, necessitating the use of syscall(2).

DESCRIPTION
These two system calls are the raw kernel interface for getting and setting thread capabilities. Not only
are these system calls specific to Linux, but the kernel API is likely to change and use of these system
calls (in particular the format of the cap_user_*_t types) is subject to extension with each kernel revi-
sion, but old programs will keep working.

The portable interfaces are cap_set _proc(3) and cap_get_proc(3); if possible, you should use those in-
terfaces in applications; see NOTES.

Current details
Now that you have been warned, some current kernel details. The structures are defined as follows.

#define _LINUX_CAPABILITY_VERSION_ 1 0x19980330
#define _LINUX_CAPABILITY_U32S_1 1

/* V2 added in Linux 2.6.25; deprecated */
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
#define _LINUX_CAPABILITY_U32S_2 2

/* V3 added iIn Linux 2.6.26 */
#define _LINUX_CAPABILITY VERSION 3 0x20080522
#define _LINUX_CAPABILITY U32S 3 2

typedef struct __ user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct __ user_cap_data_struct {
_u32 effective;
__u32 permitted;
__u32 inheritable;

} *cap_user_data_t;

The effective, permitted, and inheritable fields are bit masks of the capabilities defined in capabili-
ties(7). Note that the CAP_* values are bit indexes and need to be bit-shifted before ORing into the bit
fields. To define the structures for passing to the system call, you have to use the struct
__user_cap_header_struct and struct __user_cap_data_struct names because the typedefs are only
pointers.

Kernels prior to Linux 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPABILITY_VER-
SION_1. Linux 2.6.25 added 64-bit capability sets, with version _LINUX_ CAPABILITY_VER-
SION_2. There was, however, an API glitch, and Linux 2.6.26 added _LINUX_CAPABIL-
ITY_VERSION_3 to fix the problem.

Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities use only datap[0].

Linux man-pages 6.7 2023-10-31 1

capget(2) System Calls Manual capget(2)

On kernels that support file capabilities (VFS capabilities support), these system calls behave slightly
differently. This support was added as an option in Linux 2.6.24, and became fixed (nonoptional) in
Linux 2.6.33.

For capget() calls, one can probe the capabilities of any process by specifying its process ID with the
hdrp—>pid field value.

For details on the data, see capabilities(7).

With VFS capabilities support
VFES capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to be attached to
executables. This privilege model obsoletes kernel support for one process asynchronously setting the
capabilities of another. That is, on kernels that have VFS capabilities support, when calling capset(),
the only permitted values for hdrp—>pid are 0 or, equivalently, the value returned by gettid(2).

Without VFS capabilities support

On older kernels that do not provide VFS capabilities support capset() can, if the caller has the
CAP_SETPCAP capability, be used to change not only the caller’s own capabilities, but also the capa-
bilities of other threads. The call operates on the capabilities of the thread specified by the pid field of
hdrp when that is nonzero, or on the capabilities of the calling thread if pid is 0. If pid refers to a sin-
gle-threaded process, then pid can be specified as a traditional process ID; operating on a thread of a
multithreaded process requires a thread 1D of the type returned by gettid(2). For capset(), pid can also
be: -1, meaning perform the change on all threads except the caller and init(1); or a value less than -1,
in which case the change is applied to all members of the process group whose ID is —pid.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

The calls fail with the error EINVAL, and set the version field of hdrp to the kernel preferred value of
_LINUX_CAPABILITY_VERSION_? when an unsupported version value is specified. In this way,
one can probe what the current preferred capability revision is.

ERRORS
EFAULT
Bad memory address. hdrp must not be NULL. datap may be NULL only when the user is
trying to determine the preferred capability version format supported by the kernel.
EINVAL
One of the arguments was invalid.
EPERM

An attempt was made to add a capability to the permitted set, or to set a capability in the effec-
tive set that is not in the permitted set.

EPERM
An attempt was made to add a capability to the inheritable set, and either:

 that capability was not in the caller’s bounding set; or

» the capability was not in the caller’s permitted set and the caller lacked the CAP_SETP-
CAP capability in its effective set.

EPERM
The caller attempted to use capset() to modify the capabilities of a thread other than itself, but
lacked sufficient privilege. For kernels supporting VFS capabilities, this is never permitted.
For kernels lacking VVFS support, the CAP_SETPCAP capability is required. (A bug in ker-
nels before Linux 2.6.11 meant that this error could also occur if a thread without this capabil-
ity tried to change its own capabilities by specifying the pid field as a nonzero value (i.e., the
value returned by getpid(2)) instead of 0.)

ESRCH
No such thread.

STANDARDS
Linux.

Linux man-pages 6.7 2023-10-31 2

capget(2) System Calls Manual capget(2)

NOTES
The portable interface to the capability querying and setting functions is provided by the libcap library
and is available here:

SEE ALSO
clone(2), gettid(2), capabilities(7)

Linux man-pages 6.7 2023-10-31 3

chdir(2) System Calls Manual chdir(2)

NAME

chdir, fchdir — change working directory
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int chdir(const char * path);
int fchdir(int fd);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
fchdir():
_XOPEN_SOURCE >=500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc up to and including 2.19: */ _BSD_SOURCE

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory specified in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an open file descrip-
tor.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors for chdir() are
listed below:

EACCES
Search permission is denied for one of the components of path. (See also path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An 1/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The directory specified in path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

The general errors for fchdir() are listed below:

EACCES
Search permission was denied on the directory open on fd.

EBADF
fd is not a valid file descriptor.

ENOTDIR
fd does not refer to a directory.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

Linux man-pages 6.7 2023-10-31 1

chdir(2) System Calls Manual chdir(2)

NOTES
The current working directory is the starting point for interpreting relative pathnames (those not start-
ing with '/").
A child process created via fork(2) inherits its parent’s current working directory. The current working
directory is left unchanged by execve(2).

SEE ALSO
chroot(2), getcwd(3), path_resolution(7)

Linux man-pages 6.7 2023-10-31 2

chmod(2) System Calls Manual chmod(2)

NAME

chmod, fchmod, fchmodat — change permissions of a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/stat.h>

int chmod(const char * pathname, mode_t mode);
int fchmod(int fd, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fchmodat(int dirfd, const char * pathname, mode_t mode, int flags);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchmod():
Since glibc 2.24:
_POSIX_C_SOURCE >=199309L
glibc 2.19 to glibc 2.23
_POSIX_C_SOURCE
glibc 2.16 to glibc 2.19:
_BSD_SOURCE || _POSIX_C_SOURCE
glibc 2.12 to glibc 2.16:
_BSD_SOURCE || _XOPEN_SOURCE >= 500
|| _POSIX_C_SOURCE >= 200809L
glibc 2.11 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

fchmodat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
The chmod() and fchmod() system calls change a file’s mode bits. (The file mode consists of the file
permission bits plus the set-user-1D, set-group-ID, and sticky bits.) These system calls differ only in
how the file is specified:

« chmod() changes the mode of the file specified whose pathname is given in pathname, which is
dereferenced if it is a symbolic link.

» fchmod() changes the mode of the file referred to by the open file descriptor fd.

The new file mode is specified in mode, which is a bit mask created by ORing together zero or more of
the following:

S_ISUID (04000) set-user-1D (set process effective user ID on execve(2))

S_ISGID (02000) set-group-1D (set process effective group 1D on execve(2); mandatory locking, as
described in fcntl(2); take a new file’s group from parent directory, as described
in chown(2) and mkdir(2))

S_ISVTX (01000) sticky bit (restricted deletion flag, as described in unlink(2))
S_IRUSR (00400) read by owner
S_IWUSR (00200) write by owner

S_IXUSR (00100) execute/search by owner ("search™ applies for directories, and means that entries
within the directory can be accessed)

S_IRGRP (00040) read by group
S_IWGRP (00020) write by group

Linux man-pages 6.7 2023-10-31 1

chmod(2) System Calls Manual chmod(2)

S_IXGRP (00010) execute/search by group
S_IROTH (00004) read by others
S_IWOTH (00002) write by others
S_IXOTH (00001) execute/search by others

The effective UID of the calling process must match the owner of the file, or the process must be privi-
leged (Linux: it must have the CAP_FOWNER capability).

If the calling process is not privileged (Linux: does not have the CAP_FSETID capability), and the
group of the file does not match the effective group ID of the process or one of its supplementary group
IDs, the S_ISGID bit will be turned off, but this will not cause an error to be returned.

As a security measure, depending on the filesystem, the set-user-ID and set-group-1D execution bits
may be turned off if a file is written. (On Linux, this occurs if the writing process does not have the
CAP_FSETID capability.) On some filesystems, only the superuser can set the sticky bit, which may
have a special meaning. For the sticky bit, and for set-user-1D and set-group-1D bits on directories, see
inode(7).

On NFS filesystems, restricting the permissions will immediately influence already open files, because
the access control is done on the server, but open files are maintained by the client. Widening the per-
missions may be delayed for other clients if attribute caching is enabled on them.

fchmodat()

The fchmodat() system call operates in exactly the same way as chmod(), except for the differences
described here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to
by the file descriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by chmod() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted rela-
tive to the current working directory of the calling process (like chmod())

If pathname is absolute, then dirfd is ignored.
flags can either be 0, or include the following flag:

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead operate on the link itself. This
flag is not currently implemented.
See openat(2) for an explanation of the need for fchmodat().
RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.
ERRORS
Depending on the filesystem, errors other than those listed below can be returned.
The more general errors for chmod() are listed below:
EACCES
Search permission is denied on a component of the path prefix. (See also path_resolution(7).)
EBADF
(fchmod()) The file descriptor fd is not valid.
EBADF
(fchmodat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.
EFAULT
pathname points outside your accessible address space.
EINVAL
(fchmodat()) Invalid flag specified in flags.

EIO An /O error occurred.

Linux man-pages 6.7 2023-10-31 2

chmod(2) System Calls Manual chmod(2)

ELOOP
Too many symbolic links were encountered in resolving pathname.
ENAMETOOLONG
pathname is too long.
ENOENT
The file does not exist.
ENOMEM
Insufficient kernel memory was available.
ENOTDIR
A component of the path prefix is not a directory.
ENOTDIR
(fchmodat()) pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.
ENOTSUP
(fchmodat()) flags specified AT_SYMLINK_NOFOLLOW, which is not supported.
EPERM

The effective UID does not match the owner of the file, and the process is not privileged
(Linux: it does not have the CAP_FOWNER capability).

EPERM
The file is marked immutable or append-only. (See ioctl_iflags(2).)

EROFS
The named file resides on a read-only filesystem.

VERSIONS
C library/kernel differences
The GNU C library fchmodat() wrapper function implements the POSIX-specified interface described
in this page. This interface differs from the underlying Linux system call, which does not have a flags
argument.

glibc notes
On older kernels where fchmodat() is unavailable, the glibc wrapper function falls back to the use of
chmod(). When pathname is a relative pathname, glibc constructs a pathname based on the symbolic
link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
POSIX.1-2008.

HISTORY
chmod()
fchmod()
4.4BSD, SVr4, POSIX.1-2001.

fchmodat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

SEE ALSO
chmod (1), chown(2), execve(2), open(2), stat(2), inode(7), path_resolution(7), symlink(7)

Linux man-pages 6.7 2023-10-31 3

chown(2) System Calls Manual chown(2)

NAME

chown, fchown, Ichown, fchownat — change ownership of a file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int chown(const char * pathname, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int Ichown(const char * pathname, uid_t owner, gid_t group);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int fchownat(int dirfd, const char * pathname,
uid_t owner, gid_t group, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchown(), Ichown():
* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| _XOPEN_SOURCE >= 500
|| /* glibc <= 2.19: */ _BSD_SOURCE

fchownat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE

DESCRIPTION
These system calls change the owner and group of a file. The chown(), fchown(), and Ichown() sys-
tem calls differ only in how the file is specified:

« chown() changes the ownership of the file specified by pathname, which is dereferenced if it is a
symbolic link.

» fchown() changes the ownership of the file referred to by the open file descriptor fd.
* Ichown() is like chown(), but does not dereference symbolic links.

Only a privileged process (Linux: one with the CAP_CHOWN capability) may change the owner of a
file. The owner of a file may change the group of the file to any group of which that owner is a mem-
ber. A privileged process (Linux: with CAP_CHOWN) may change the group arbitrarily.

If the owner or group is specified as —1, then that ID is not changed.

When the owner or group of an executable file is changed by an unprivileged user, the S_ISUID and
S_ISGID mode bits are cleared. POSIX does not specify whether this also should happen when root
does the chown(); the Linux behavior depends on the kernel version, and since Linux 2.2.13, root is
treated like other users. In case of a non-group-executable file (i.e., one for which the S_IXGRP bit is
not set) the S_ISGID bit indicates mandatory locking, and is not cleared by a chown().

When the owner or group of an executable file is changed (by any user), all capability sets for the file
are cleared.

fchownat()
The fchownat() system call operates in exactly the same way as chown(), except for the differences de-
scribed here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to
by the file descriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by chown() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted rela-
tive to the current working directory of the calling process (like chown())

If pathname is absolute, then dirfd is ignored.

Linux man-pages 6.7 2023-10-31 1

chown(2) System Calls Manual chown(2)

The flags argument is a bit mask created by ORing together 0 or more of the following values;

AT_EMPTY_PATH (since Linux 2.6.39)
If pathname is an empty string, operate on the file referred to by dirfd (which may have been
obtained using the open(2) O_PATH flag). In this case, dirfd can refer to any type of file, not
just a directory. If dirfd is AT_FDCWD, the call operates on the current working directory.
This flag is Linux-specific; define _GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead operate on the link itself, like
Ichown(). (By default, fchownat() dereferences symbolic links, like chown().)

See openat(2) for an explanation of the need for fchownat().

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chown() are listed below.

EACCES
Search permission is denied on a component of the path prefix. (See also path_resolution(7).)

EBADF
(fchown()) fd is not a valid open file descriptor.

EBADF
(fchownat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EFAULT
pathname points outside your accessible address space.

EINVAL
(fchownat()) Invalid flag specified in flags.

EIO (fchown()) A low-level I/O error occurred while modifying the inode.

ELOOP
Too many symbolic links were encountered in resolving pathname.
ENAMETOOLONG
pathname is too long.
ENOENT
The file does not exist.
ENOMEM
Insufficient kernel memory was available.
ENOTDIR
A component of the path prefix is not a directory.
ENOTDIR
(fchownat()) pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.
EPERM
The calling process did not have the required permissions (see above) to change owner and/or
group.
EPERM
The file is marked immutable or append-only. (See ioctl_iflags(2).)
EROFS

The named file resides on a read-only filesystem.

VERSIONS
The 4.4BSD version can be used only by the superuser (that is, ordinary users cannot give away files).

Linux man-pages 6.7 2023-10-31 2

chown(2) System Calls Manual chown(2)

STANDARDS

POSIX.1-2008.

HISTORY

chown()
fchown()
Ichown()
4.4BSD, SVr4, POSIX.1-2001.

fchownat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Ownership of new files

When a new file is created (by, for example, open(2) or mkdir(2)), its owner is made the same as the
filesystem user ID of the creating process. The group of the file depends on a range of factors, includ-
ing the type of filesystem, the options used to mount the filesystem, and whether or not the set-group-
ID mode bit is enabled on the parent directory. If the filesystem supports the —o grpid (or, synony-
mously -0 bsdgroups) and —o nogrpid (or, synonymously -0 sysvgroups) mount(8) options, then the
rules are as follows:

« If the filesystem is mounted with -0 grpid, then the group of a new file is made the same as that of
the parent directory.

« If the filesystem is mounted with —o nogrpid and the set-group-1D bit is disabled on the parent di-
rectory, then the group of a new file is made the same as the process’s filesystem GID.

« If the filesystem is mounted with —o nogrpid and the set-group-ID bit is enabled on the parent di-
rectory, then the group of a new file is made the same as that of the parent directory.

As at Linux 4.12, the —o grpid and —o nogrpid mount options are supported by ext2, ext3, ext4, and
XFS. Filesystems that don’t support these mount options follow the —o nogrpid rules.

glibc notes

On older kernels where fchownat() is unavailable, the glibc wrapper function falls back to the use of
chown() and Ichown(). When pathname is a relative pathname, glibc constructs a pathname based on
the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

The chown() semantics are deliberately violated on NFS filesystems which have UID mapping en-
abled. Additionally, the semantics of all system calls which access the file contents are violated, be-
cause chown() may cause immediate access revocation on already open files. Client side caching may
lead to a delay between the time where ownership have been changed to allow access for a user and the
time where the file can actually be accessed by the user on other clients.

Historical details

The original Linux chown(), fchown(), and Ichown() system calls supported only 16-bit user and
group IDs. Subsequently, Linux 2.4 added chown32(), fchown32(), and Ichown32(), supporting 32-bit
IDs. The glibc chown(), fchown(), and Ichown() wrapper functions transparently deal with the varia-
tions across kernel versions.

Before Linux 2.1.81 (except 2.1.46), chown() did not follow symbolic links. Since Linux 2.1.81,
chown() does follow symbolic links, and there is a new system call Ichown() that does not follow sym-
bolic links. Since Linux 2.1.86, this new call (that has the same semantics as the old chown()) has got
the same syscall number, and chown() got the newly introduced number.

EXAMPLES

The following program changes the ownership of the file named in its second command-line argument
to the value specified in its first command-line argument. The new owner can be specified either as a
numeric user ID, or as a username (which is converted to a user ID by using getpwnam(3) to perform a
lookup in the system password file).

Program source

#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.7 2023-10-31 3

chown(2) System Calls Manual chown(2)

#include <unistd.h>

int
main(int argc, char *argv[])
{
char *endptr;
uid_t uid;
struct passwd *pwd;
if (argc !'= 3 || argv[1][0] == "\0") {
fprintf(stderr, "%s <owner> <file>\n", argv[0]);
exit(EXIT_FAILURE);
}
uid = strtol(argv[1l], &endptr, 10); /* Allow a numeric string */
if (Fendptr = "\0") { /* Was not pure numeric string */
pwd = getpwnam(argv[1]); /* Try getting UID for username */
if (pwd == NULL) {
perror(‘‘getpwnam');
exit(EXIT_FAILURE);
}
uid = pwd->pw_uid;
}
it (chown(argv[2], uid, -1) == -1) {
perror(*‘chown™);
exit(EXIT_FAILURE);
}
exi1t(EXIT_SUCCESS);
}
SEE ALSO

chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

Linux man-pages 6.7 2023-10-31 4

chroot(2) System Calls Manual chroot(2)

NAME

chroot - change root directory
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int chroot(const char * path);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

chroot():
Since glibc 2.2.2:
_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >=200112L)
|| /* Since glibc 2.20: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE
Before glibc 2.2.2:
none

DESCRIPTION
chroot() changes the root directory of the calling process to that specified in path. This directory will
be used for pathnames beginning with /. The root directory is inherited by all children of the calling
process.

Only a privileged process (Linux: one with the CAP_SYS_CHROOQT capability in its user namespace)
may call chroot().

This call changes an ingredient in the pathname resolution process and does nothing else. In particular,
it is not intended to be used for any kind of security purpose, neither to fully sandbox a process nor to
restrict filesystem system calls. In the past, chroot() has been used by daemons to restrict themselves
prior to passing paths supplied by untrusted users to system calls such as open(2). However, if a folder
is moved out of the chroot directory, an attacker can exploit that to get out of the chroot directory as
well. The easiest way to do that is to chdir(2) to the to-be-moved directory, wait for it to be moved out,
then open a path like ../../../etc/passwd.

A slightly trickier variation also works under some circumstances if chdir(2) is not permitted. If a dae-
mon allows a "chroot directory" to be specified, that usually means that if you want to prevent remote
users from accessing files outside the chroot directory, you must ensure that folders are never moved
out of it.

This call does not change the current working directory, so that after the call . can be outside the tree
rooted at /. In particular, the superuser can escape from a "chroot jail" by doing:

mkdir foo; chroot foo; cd ..

This call does not close open file descriptors, and such file descriptors may allow access to files outside
the chroot tree.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors are listed below:
EACCES
Search permission is denied on a component of the path prefix. (See also path_resolution(7).)
EFAULT

path points outside your accessible address space.
EIO An /O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

Linux man-pages 6.7 2023-10-31 1

chroot(2) System Calls Manual chroot(2)

ENOENT
The file does not exist.
ENOMEM
Insufficient kernel memory was available.
ENOTDIR
A component of path is not a directory.
EPERM
The caller has insufficient privilege.
STANDARDS
None.
HISTORY

SVr4, 4.4BSD, SUSv2 (marked LEGACY). This function is not part of POSIX.1-2001.

NOTES

A child process created via fork(2) inherits its parent’s root directory. The root directory is left un-
changed by execve(2).

The magic symbolic link, /proc/pid/root, can be used to discover a process’s root directory; see
proc(5) for details.

FreeBSD has a stronger jail() system call.

SEE ALSO
chroot(1), chdir(2), pivot_root(2), path_resolution(7), switch_root(8)

Linux man-pages 6.7 2023-10-31 2

clock_getres(2) System Calls Manual clock_getres(2)

NAME
clock_getres, clock_gettime, clock_settime — clock and time functions

LIBRARY
Standard C library (libc, —Ic), since glibc 2.17

Before glibc 2.17, Real-time library (librt, —Irt)

SYNOPSIS
#include <time.h>

int clock_getres(clockid_t clockid, struct timespec *_Nullable res);

int clock_gettime(clockid_t clockid, struct timespec *tp);
int clock_settime(clockid_t clockid, const struct timespec *tp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getres(), clock_gettime(), clock_settime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
The function clock_getres() finds the resolution (precision) of the specified clock clockid, and, if res is
non-NULL, stores it in the struct timespec pointed to by res. The resolution of clocks depends on the
implementation and cannot be configured by a particular process. If the time value pointed to by the
argument tp of clock_settime() is not a multiple of res, then it is truncated to a multiple of res.

The functions clock_gettime() and clock_settime() retrieve and set the time of the specified clock
clockid.

The res and tp arguments are timespec(3) structures.

The clockid argument is the identifier of the particular clock on which to act. A clock may be system-
wide and hence visible for all processes, or per-process if it measures time only within a single process.

All implementations support the system-wide real-time clock, which is identified by CLOCK_REAL-
TIME. Its time represents seconds and nanoseconds since the Epoch. When its time is changed,
timers for a relative interval are unaffected, but timers for an absolute point in time are affected.

More clocks may be implemented. The interpretation of the corresponding time values and the effect
on timers is unspecified.

Sufficiently recent versions of glibc and the Linux kernel support the following clocks:

CLOCK_REALTIME

A settable system-wide clock that measures real (i.e., wall-clock) time. Setting this clock re-
quires appropriate privileges. This clock is affected by discontinuous jumps in the system
time (e.g., if the system administrator manually changes the clock), and by frequency adjust-
ments performed by NTP and similar applications via adjtime(3), adjtimex(2), clock_adj-
time(2), and ntp_adjtime(3). This clock normally counts the number of seconds since
1970-01-01 00:00:00 Coordinated Universal Time (UTC) except that it ignores leap seconds;
near a leap second it is typically adjusted by NTP to stay roughly in sync with UTC.

CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_REALTIME, but not settable. See timer_create(2) for further details.

CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_REALTIME. This clock is not settable. Use
when you need very fast, but not fine-grained timestamps. Requires per-architecture support,
and probably also architecture support for this flag in the vdso(7).

CLOCK_TAI (since Linux 3.10; Linux-specific)
A nonsettable system-wide clock derived from wall-clock time but counting leap seconds.
This clock does not experience discontinuities or frequency adjustments caused by inserting
leap seconds as CLOCK_REALTIME does.

The acronym TAI refers to International Atomic Time.

CLOCK_MONOTONIC
A nonsettable system-wide clock that represents monotonic time since—as described by
POSIX—"some unspecified point in the past". On Linux, that point corresponds to the

Linux man-pages 6.7 2024-03-05 1

clock_getres(2) System Calls Manual clock_getres(2)

number of seconds that the system has been running since it was booted.

The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the system
time (e.g., if the system administrator manually changes the clock), but is affected by fre-
quency adjustments. This clock does not count time that the system is suspended. All
CLOCK_MONOTONIC variants guarantee that the time returned by consecutive calls will
not go backwards, but successive calls may—depending on the architecture—return identical
(not-increased) time values.

CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_MONOTONIC. Use when you need very fast,
but not fine-grained timestamps. Requires per-architecture support, and probably also archi-
tecture support for this flag in the vdso(7).

CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)
Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is
not subject to frequency adjustments. This clock does not count time that the system is sus-
pended.

CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)
A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC, except that it
also includes any time that the system is suspended. This allows applications to get a sus-
pend-aware monotonic clock without having to deal with the complications of CLOCK_RE-
ALTIME, which may have discontinuities if the time is changed using settimeofday(2) or sim-
ilar.

CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_BOOTTIME. See timer_create(2) for further details.

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this process (i.e., CPU time consumed
by all threads in the process). On Linux, this clock is not settable.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this thread. On Linux, this clock is not
settable.

Linux also implements dynamic clock instances as described below.

Dynamic clocks
In addition to the hard-coded System-V style clock I1Ds described above, Linux also supports POSIX
clock operations on certain character devices. Such devices are called "dynamic" clocks, and are sup-
ported since Linux 2.6.39.

Using the appropriate macros, open file descriptors may be converted into clock IDs and passed to
clock_gettime(), clock_settime(), and clock_adjtime(2). The following example shows how to convert
a file descriptor into a dynamic clock ID.

#define CLOCKFD 3
#define FD_TO_CLOCKID(Fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
#define CLOCKID_TO_FD(clk) ((unsigned int) ~((clk) >> 3))

struct timespec ts;
clockid_t clkid;
int fd;

fd = open("/dev/ptp0*”, O_RDWR);

clkid = FD_TO_CLOCKID(Fd);

clock _gettime(clkid, &ts);
RETURN VALUE

clock_gettime(), clock_settime(), and clock_getres() return O for success. On error, -1 is returned
and errno is set to indicate the error.

Linux man-pages 6.7 2024-03-05 2

clock_getres(2) System Calls Manual clock_getres(2)

ERRORS

EACCES
clock_settime() does not have write permission for the dynamic POSIX clock device indi-
cated.

EFAULT
tp points outside the accessible address space.

EINVAL
The clockid specified is invalid for one of two reasons. Either the System-V style hard coded
positive value is out of range, or the dynamic clock ID does not refer to a valid instance of a
clock object.

EINVAL
(clock_settime()): tp.tv_sec is negative or tp.tv_nsec is outside the range [0, 999,999,999].

EINVAL

The clockid specified in a call to clock_settime() is not a settable clock.

EINVAL (since Linux 4.3)
A call to clock_settime() with a clockid of CLOCK_REALTIME attempted to set the time
to a value less than the current value of the CLOCK_MONOTONIC clock.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic clk_id has disap-
peared after its character device was opened.

ENOTSUP
The operation is not supported by the dynamic POSIX clock device specified.

EOVERFLOW
The timestamp would not fit in time_t range. This can happen if an executable with 32-bit
time_t is run on a 64-bit kernel when the time is 2038-01-19 03:14:08 UTC or later. However,
when the system time is out of time_t range in other situations, the behavior is undefined.

EPERM
clock_settime() does not have permission to set the clock indicated.
ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
clock_getres(), clock_gettime(), clock_settime() Thread safety | MT-Safe
VERSIONS

POSIX.1 specifies the following:

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect
on threads that are blocked waiting for a relative time service based upon this clock, including
the nanosleep() function; nor on the expiration of relative timers based upon this clock. Con-
sequently, these time services shall expire when the requested relative interval elapses, inde-
pendently of the new or old value of the clock.

According to POSIX.1-2001, a process with "appropriate privileges" may set the
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID clocks using
clock_settime(). On Linux, these clocks are not settable (i.e., no process has "appropriate privileges").

C library/kernel differences
On some architectures, an implementation of clock_gettime() is provided in the vdso(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2. Linux 2.6.

On POSIX systems on which these functions are available, the symbol POSIX_ TIMERS is defined
in <unistd.h> to a value greater than 0. POSIX.1-2008 makes these functions mandatory.

The symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME,

Linux man-pages 6.7 2024-03-05 3

clock_getres(2) System Calls Manual clock_getres(2)

_POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are available. (See also
sysconf(3).)

Historical note for SMP systems
Before Linux added kernel support for CLOCK_PROCESS CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many platforms using timer
registers from the CPUs (TSC on i386, AR.ITC on Itanium). These registers may differ between CPUs
and as a consequence these clocks may return bogus results if a process is migrated to another CPU.

If the CPUs in an SMP system have different clock sources, then there is no way to maintain a correla-
tion between the timer registers since each CPU will run at a slightly different frequency. If that is the
case, then clock_getcpuclockid(0) will return ENOENT to signify this condition. The two clocks will
then be useful only if it can be ensured that a process stays on a certain CPU.

The processors in an SMP system do not start all at exactly the same time and therefore the timer regis-
ters are typically running at an offset. Some architectures include code that attempts to limit these off-
sets on bootup. However, the code cannot guarantee to accurately tune the offsets. glibc contains no
provisions to deal with these offsets (unlike the Linux Kernel). Typically these offsets are small and
therefore the effects may be negligible in most cases.

Since glibc 2.4, the wrapper functions for the system calls described in this page avoid the abovemen-
tioned problems by employing the kernel implementation of CLOCK_PROCESS_CPUTIME_ID
and CLOCK_THREAD_CPUTIME_ID, on systems that provide such an implementation (i.e., Linux
2.6.12 and later).

EXAMPLES
The program below demonstrates the use of clock_gettime() and clock_getres() with various clocks.
This is an example of what we might see when running the program:

$./clock _times x
CLOCK_REALTIME : 1585985459.446 (18356 days + 7h 30m 59s)

resolution: 0.000000001
CLOCK_TAI : 1585985496.447 (18356 days + 7h 31m 36s)
resolution: 0.000000001
CLOCK_MONOTONIC: 52395.722 (14h 33m 15s)
resolution: 0.000000001
CLOCK_BOOTTIME : 72691.019 (20h 11m 31s)
resolution: 0.000000001

Program source
/* clock_times.c

Licensed under GNU General Public License v2 or later.
*/
#define _XOPEN_SOURCE 600
#include <stdbool.h>
#include <stdint._.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define SECS_IN_DAY (24 * 60 * 60)

static void
displayClock(clockid_t clock, const char *name, bool showRes)

long days;
struct timespec ts;

if (clock gettime(clock, &ts) == -1) {
perror('clock_gettime');

Linux man-pages 6.7 2024-03-05 4

clock_getres(2) System Calls Manual clock_getres(2)

exit(EXIT_FAILURE);
}

printf("'%-15s: %10jd-%031d (', name,
(intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

days = ts.tv_sec / SECS_IN_DAY;
if (days > 0)
printf("'%ld days + ', days);

printf("'%2dh %2dm %2ds',
(int) (ts.tv_sec % SECS_IN_DAY) / 3600,
(int) (ts.tv_sec % 3600) / 60,
(int) ts.tv_sec % 60);

printf(*)\n");

if (clock getres(clock, &ts) == -1) {
perror('clock_getres™™);
exit(EXIT_FAILURE);

}

it (showRes)
printf(" resolution: %10jd.%0901d\n",
(intmax_t) ts.tv_sec, ts.tv_nsec);

}

int
main(int argc, char *argv[])

{

bool showRes = argc > 1;

displayClock(CLOCK_REALTIME, "CLOCK_REALTIME'"™, showRes);
#ifdef CLOCK_TAI

displayClock(CLOCK_TAIl, "CLOCK_TAI'", showRes);
#endif

displayClock(CLOCK_MONOTONIC, "CLOCK_MONOTONIC"™, showRes);
#ifdef CLOCK_BOOTTIME

displayClock(CLOCK_BOOTTIME, "CLOCK_BOOTTIME'"™, showRes);
#endif

exi1t(EXIT_SUCCESS);
}

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock getcpuclockid(3), ctime(3),
ftime(3), pthread_getcpuclockid(3), sysconf(3), timespec(3), time(7), time_namespaces(7), vdso(7), hw-
clock(8)

Linux man-pages 6.7 2024-03-05 5

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

NAME
clock_nanosleep — high-resolution sleep with specifiable clock

LIBRARY
Standard C library (libc, —Ic), since glibc 2.17

Before glibc 2.17, Real-time library (librt, —Irt)

SYNOPSIS
#include <time.h>

int clock_nanosleep(clockid_t clockid, int flags,
const struct timespec *t,
struct timespec *_Nullable remain);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
Like nanosleep(2), clock_nanosleep() allows the calling thread to sleep for an interval specified with
nanosecond precision. It differs in allowing the caller to select the clock against which the sleep inter-
val is to be measured, and in allowing the sleep interval to be specified as either an absolute or a rela-
tive value.

The time values passed to and returned by this call are specified using timespec(3) structures.

The clockid argument specifies the clock against which the sleep interval is to be measured. This argu-
ment can have one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

CLOCK_MONOTONIC
A nonsettable, monotonically increasing clock that measures time since some unspecified
point in the past that does not change after system startup.

CLOCK_BOOTTIME (since Linux 2.6.39)
Identical to CLOCK_MONOTONIC, except that it also includes any time that the system is
suspended.

CLOCK_PROCESS_CPUTIME_ID
A settable per-process clock that measures CPU time consumed by all threads in the process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs returned by
clock_getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed in clockid.

If flags is O, then the value specified in t is interpreted as an interval relative to the current value of the
clock specified by clockid.

If flags is TIMER_ABSTIME, then t is interpreted as an absolute time as measured by the clock,
clockid. If t is less than or equal to the current value of the clock, then clock_nanosleep() returns im-
mediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the time specified
by t has elapsed, or a signal is delivered that causes a signal handler to be called or that terminates the
process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error EINTR. In addi-
tion, if remain is not NULL, and flags was not TIMER_ABSTIME, it returns the remaining unslept
time in remain. This value can then be used to call clock_nanosleep() again and complete a (relative)
sleep.

RETURN VALUE
On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If the call is inter-
rupted by a signal handler or encounters an error, then it returns one of the positive error number listed
in ERRORS.

Linux man-pages 6.7 2024-03-05 1

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

ERRORS
EFAULT
t or remain specified an invalid address.
EINTR
The sleep was interrupted by a signal handler; see signal(7).
EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec was negative.
EINVAL
clockid was invalid. (CLOCK_THREAD_CPUTIME_ID is not a permitted value for
clockid.)
ENOTSUP
The kernel does not support sleeping against this clockid.
STANDARDS
POSIX.1-2008.
HISTORY
POSIX.1-2001. Linux 2.6, glibc 2.1.
NOTES

If the interval specified in t is not an exact multiple of the granularity underlying clock (see time(7)),
then the interval will be rounded up to the next multiple. Furthermore, after the sleep completes, there
may still be a delay before the CPU becomes free to once again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type described in
nanosleep(2). (Such problems are exacerbated in programs that try to restart a relative sleep that is re-
peatedly interrupted by signals.) To perform a relative sleep that avoids these problems, call clock_get-
time(2) for the desired clock, add the desired interval to the returned time value, and then call
clock_nanosleep() with the TIMER_ABSTIME flag.

clock_nanosleep() is never restarted after being interrupted by a signal handler, regardless of the use of
the sigaction(2) SA_RESTART flag.

The remain argument is unused, and unnecessary, when flags is TIMER_ABSTIME. (An absolute
sleep can be restarted using the same t argument.)

POSIX.1 specifies that clock_nanosleep() has no effect on signals dispositions or the signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIME clock via clock_set-
time(2), the new clock value shall be used to determine the time at which a thread blocked on an ab-
solute clock_nanosleep() will wake up; if the new clock value falls past the end of the sleep interval,
then the clock_nanosleep() call will return immediately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIME clock via clock_settime(2)
shall have no effect on a thread that is blocked on a relative clock_nanosleep().

SEE ALSO
clock_getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), timespec(3), usleep(3),
time(7)

Linux man-pages 6.7 2024-03-05 2

clone(2) System Calls Manual clone(2)

NAME

clone, __clone2, clone3 - create a child process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

/* Prototype for the glibc wrapper function */

#define _ GNU_SOURCE
#include <sched.h>

int clone(int (* fn)(void *_Nullable), void *stack, int flags,
void *_Nullable arg, ... /* pid_t*_Nullable parent_tid,
void *_Nullable tls,
pid_t *_Nullable child_tid */);

/* For the prototype of the raw clone() system call, see NOTES */

#include <linux/sched.h> /* Definition of struct clone_args */
#include <sched.h> /* Definition of CLONE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_clone3, struct clone_args *cl_args, size_t size);
Note: glibc provides no wrapper for clone3(), necessitating the use of syscall(2).

DESCRIPTION
These system calls create a new (“child") process, in a manner similar to fork(2).

By contrast with fork(2), these system calls provide more precise control over what pieces of execution
context are shared between the calling process and the child process. For example, using these system
calls, the caller can control whether or not the two processes share the virtual address space, the table
of file descriptors, and the table of signal handlers. These system calls also allow the new child process
to be placed in separate namespaces(7).

Note that in this manual page, "calling process™ normally corresponds to "parent process"”. But see the
descriptions of CLONE_PARENT and CLONE_THREAD below.

This page describes the following interfaces:

» The glibc clone() wrapper function and the underlying system call on which it is based. The main
text describes the wrapper function; the differences for the raw system call are described toward the
end of this page.

* The newer clone3() system call.

In the remainder of this page, the terminology "the clone call" is used when noting details that apply to
all of these interfaces.

The clone() wrapper function
When the child process is created with the clone() wrapper function, it commences execution by calling
the function pointed to by the argument fn. (This differs from fork(2), where execution continues in
the child from the point of the fork(2) call.) The arg argument is passed as the argument of the func-
tion fn.

When the fn(arg) function returns, the child process terminates. The integer returned by fn is the exit
status for the child process. The child process may also terminate explicitly by calling exit(2) or after
receiving a fatal signal.

The stack argument specifies the location of the stack used by the child process. Since the child and
calling process may share memory;, it is not possible for the child process to execute in the same stack
as the calling process. The calling process must therefore set up memory space for the child stack and
pass a pointer to this space to clone(). Stacks grow downward on all processors that run Linux (except
the HP PA processors), so stack usually points to the topmost address of the memory space set up for
the child stack. Note that clone() does not provide a means whereby the caller can inform the kernel of
the size of the stack area.

The remaining arguments to clone() are discussed below.

Linux man-pages 6.7 2024-02-18 1

clone(2) System Calls Manual clone(2)

clone3()
The clone3() system call provides a superset of the functionality of the older clone() interface. It also
provides a number of APl improvements, including: space for additional flags bits; cleaner separation
in the use of various arguments; and the ability to specify the size of the child’s stack area.

As with fork(2), clone3() returns in both the parent and the child. It returns 0 in the child process and
returns the PID of the child in the parent.

The cl_args argument of clone3() is a structure of the following form:

struct clone_args {

u64 flags; /* Flags bit mask */
u64 pidfd; /* Where to store PID file descriptor
(int *) */

u64 child_tid; /* Where to store child TID,

in child®"s memory (pid_t *) */
u64 parent_tid; /* Where to store child TID,

in parent®s memory (pid_t *) */
u64 exit_signal; /* Signal to deliver to parent on

child termination */

u64 stack; /* Pointer to lowest byte of stack */
ub4 stack_size; /* Size of stack */

u64d tls; /* Location of new TLS */

u64 set_tid; /* Pointer to a pid_t array

(since Linux 5.5) */
ub4 set_tid_size; /* Number of elements in set tid
(since Linux 5.5) */
u64 cgroup; /* File descriptor for target cgroup
of child (since Linux 5.7) */
}:
The size argument that is supplied to clone3() should be initialized to the size of this structure. (The
existence of the size argument permits future extensions to the clone_args structure.)

The stack for the child process is specified via cl_args.stack, which points to the lowest byte of the
stack area, and cl_args.stack_size, which specifies the size of the stack in bytes. In the case where the
CLONE_VM flag (see below) is specified, a stack must be explicitly allocated and specified. Other-
wise, these two fields can be specified as NULL and 0, which causes the child to use the same stack
area as the parent (in the child’s own virtual address space).

The remaining fields in the cl_args argument are discussed below.

Equivalence between clone() and clone3() arguments
Unlike the older clone() interface, where arguments are passed individually, in the newer clone3() in-
terface the arguments are packaged into the clone_args structure shown above. This structure allows
for a superset of the information passed via the clone() arguments.

The following table shows the equivalence between the arguments of clone() and the fields in the
clone_args argument supplied to clone3():

clone() clone3() Notes
cl_args field
flags & ~Oxff flags For most flags; details below
parent_tid pidfd See CLONE_PIDFD
child_tid child_tid See CLONE_CHILD_SETTID

parent_tid parent_tid See CLONE_PARENT _SETTID
flags & Oxff exit_signal

stack stack

- stack_size

tls tls See CLONE_SETTLS

- set_tid See below for details

- set_tid size

--- cgroup See CLONE_INTO_CGROUP

Linux man-pages 6.7 2024-02-18 2

clone(2) System Calls Manual clone(2)

The child termination signal
When the child process terminates, a signal may be sent to the parent. The termination signal is speci-
fied in the low byte of flags (clone()) or in cl_args.exit_signal (clone3()). If this signal is specified as
anything other than SIGCHLD, then the parent process must specify the _ WALL or _ WCLONE
options when waiting for the child with wait(2). If no signal (i.e., zero) is specified, then the parent
process is not signaled when the child terminates.

The set_tid array
By default, the kernel chooses the next sequential PID for the new process in each of the PID name-
spaces where it is present. When creating a process with clone3(), the set_tid array (available since
Linux 5.5) can be used to select specific PIDs for the process in some or all of the PID namespaces
where it is present. If the PID of the newly created process should be set only for the current PID
namespace or in the newly created PID namespace (if flags contains CLONE_NEWPID) then the first
element in the set_tid array has to be the desired PID and set_tid_size needs to be 1.

If the PID of the newly created process should have a certain value in multiple PID namespaces, then
the set_tid array can have multiple entries. The first entry defines the PID in the most deeply nested
PID namespace and each of the following entries contains the PID in the corresponding ancestor PID
namespace. The number of PID namespaces in which a PID should be set is defined by set_tid_size
which cannot be larger than the number of currently nested PID namespaces.

To create a process with the following PIDs in a PID namespace hierarchy:
PID NS level Requested PID Notes

0 31496 Outermost PID namespace
1 42
2 7 Innermost PID namespace

Set the array to:

set_tid[0] 7;
set_tid[1] 42;
set_tid[2] = 31496;
set_tid_size = 3;

If only the PIDs in the two innermost PID namespaces need to be specified, set the array to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid_size = 2;

The PID in the PID namespaces outside the two innermost PID namespaces is selected the same way as
any other PID is selected.

The set_tid feature requires CAP_SYS_ADMIN or (since Linux 5.9) CAP_CHECKPOINT_RE-
STORE in all owning user namespaces of the target PID namespaces.

Callers may only choose a PID greater than 1 in a given PID namespace if an init process (i.e., a
process with PID 1) already exists in that namespace. Otherwise the PID entry for this PID namespace
must be 1.

The flags mask
Both clone() and clone3() allow a flags bit mask that modifies their behavior and allows the caller to
specify what is shared between the calling process and the child process. This bit mask—the flags ar-
gument of clone() or the cl_args.flags field passed to clone3()—is referred to as the flags mask in the
remainder of this page.

The flags mask is specified as a bitwise OR of zero or more of the constants listed below. Except as
noted below, these flags are available (and have the same effect) in both clone() and clone3().

CLONE_CHILD_CLEARTID (since Linux 2.5.49)
Clear (zero) the child thread ID at the location pointed to by child_tid (clone()) or
cl_args.child_tid (clone3()) in child memory when the child exits, and do a wakeup on the fu-
tex at that address. The address involved may be changed by the set_tid_address(2) system
call. This is used by threading libraries.

Linux man-pages 6.7 2024-02-18 3

clone(2) System Calls Manual clone(2)

CLONE_CHILD_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by child_tid (clone()) or cl_args.child_tid
(clone3()) in the child’s memory. The store operation completes before the clone call returns
control to user space in the child process. (Note that the store operation may not have com-
pleted before the clone call returns in the parent process, which is relevant if the
CLONE_VM flag is also employed.)

CLONE_CLEAR_SIGHAND (since Linux 5.5)
By default, signal dispositions in the child thread are the same as in the parent. If this flag is
specified, then all signals that are handled in the parent (and not set to SIG_IGN) are reset to
their default dispositions (SIG_DFL) in the child.

Specifying this flag together with CLONE_SIGHAND is nonsensical and disallowed.

CLONE_DETACHED (historical)
For a while (during the Linux 2.5 development series) there was a CLONE_DETACHED
flag, which caused the parent not to receive a signal when the child terminated. Ultimately,
the effect of this flag was subsumed under the CLONE_THREAD flag and by the time Linux
2.6.0 was released, this flag had no effect. Starting in Linux 2.6.2, the need to give this flag to-
gether with CLONE_THREAD disappeared.

This flag is still defined, but it is usually ignored when calling clone(). However, see the de-
scription of CLONE_PIDFD for some exceptions.

CLONE_FILES (since Linux 2.0)
If CLONE_FILES is set, the calling process and the child process share the same file descrip-
tor table. Any file descriptor created by the calling process or by the child process is also valid
in the other process. Similarly, if one of the processes closes a file descriptor, or changes its
associated flags (using the fcntl(2) F_SETFD operation), the other process is also affected. If
a process sharing a file descriptor table calls execve(2), its file descriptor table is duplicated
(unshared).

If CLONE_FILES is not set, the child process inherits a copy of all file descriptors opened in
the calling process at the time of the clone call. Subsequent operations that open or close file
descriptors, or change file descriptor flags, performed by either the calling process or the child
process do not affect the other process. Note, however, that the duplicated file descriptors in
the child refer to the same open file descriptions as the corresponding file descriptors in the
calling process, and thus share file offsets and file status flags (see open(2)).

CLONE_FS (since Linux 2.0)
If CLONE_FS is set, the caller and the child process share the same filesystem information.
This includes the root of the filesystem, the current working directory, and the umask. Any
call to chroot(2), chdir(2), or umask(2) performed by the calling process or the child process
also affects the other process.

If CLONE_FS is not set, the child process works on a copy of the filesystem information of
the calling process at the time of the clone call. Calls to chroot(2), chdir(2), or umask(2) per-
formed later by one of the processes do not affect the other process.

CLONE_INTO_CGROUP (since Linux 5.7)
By default, a child process is placed in the same version 2 cgroup as its parent. The
CLONE_INTO_CGROUP flag allows the child process to be created in a different version 2
cgroup. (Note that CLONE_INTO_CGROUP has effect only for version 2 cgroups.)

In order to place the child process in a different cgroup, the caller specifies
CLONE_INTO_CGROUP in cl_args.flags and passes a file descriptor that refers to a ver-
sion 2 cgroup in the cl_args.cgroup field. (This file descriptor can be obtained by opening a
cgroup v2 directory using either the O_RDONLY or the O_PATH flag.) Note that all of the
usual restrictions (described in cgroups(7)) on placing a process into a version 2 cgroup apply.

Among the possible use cases for CLONE_INTO_CGROUP are the following:

» Spawning a process into a cgroup different from the parent’s cgroup makes it possible for
a service manager to directly spawn new services into dedicated cgroups. This eliminates
the accounting jitter that would be caused if the child process was first created in the same
cgroup as the parent and then moved into the target cgroup. Furthermore, spawning the

Linux man-pages 6.7 2024-02-18 4

clone(2)

System Calls Manual clone(2)

child process directly into a target cgroup is significantly cheaper than moving the child
process into the target cgroup after it has been created.

e The CLONE_INTO_CGROUP flag also allows the creation of frozen child processes by
spawning them into a frozen cgroup. (See cgroups(7) for a description of the freezer con-
troller.)

» For threaded applications (or even thread implementations which make use of cgroups to
limit individual threads), it is possible to establish a fixed cgroup layout before spawning
each thread directly into its target cgroup.

CLONE_IO (since Linux 2.6.25)

If CLONE_IO is set, then the new process shares an 1/O context with the calling process. If
this flag is not set, then (as with fork(2)) the new process has its own 1/O context.

The 1/0O context is the 1/0 scope of the disk scheduler (i.e., what the I/O scheduler uses to
model scheduling of a process’s 1/O). If processes share the same /O context, they are treated
as one by the 1/0 scheduler. As a consequence, they get to share disk time. For some 1/O
schedulers, if two processes share an 1/O context, they will be allowed to interleave their disk
access. If several threads are doing 1/O on behalf of the same process (aio_read(3), for in-
stance), they should employ CLONE_IO to get better 1/0 performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is a no-op.

CLONE_NEWCGROUP (since Linux 4.6)

Create the process in a new cgroup namespace. If this flag is not set, then (as with fork(2)) the
process is created in the same cgroup namespaces as the calling process.

For further information on cgroup namespaces, see cgroup_namespaces(7).
Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWCGROUP.

CLONE_NEWIPC (since Linux 2.6.19)

If CLONE_NEWIPC is set, then create the process in a new IPC namespace. If this flag is
not set, then (as with fork(2)), the process is created in the same IPC namespace as the calling
process.

For further information on IPC namespaces, see ipc_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWIPC. This flag
can’t be specified in conjunction with CLONE_SYSVSEM.

CLONE_NEWNET (since Linux 2.6.24)

(The implementation of this flag was completed only by about Linux 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network namespace. If this flag
is not set, then (as with fork(2)) the process is created in the same network namespace as the
calling process.

For further information on network namespaces, see network_namespaces(7).
Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)

If CLONE_NEWNS is set, the cloned child is started in a new mount namespace, initialized
with a copy of the namespace of the parent. If CLONE_NEWNS is not set, the child lives in
the same mount namespace as the parent.

For further information on mount namespaces, see namespaces(7) and mount_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWNS. It is not
permitted to specify both CLONE_NEWNS and CLONE_FS in the same clone call.

CLONE_NEWPID (since Linux 2.6.24)

If CLONE_NEWPID is set, then create the process in a new PID namespace. If this flag is
not set, then (as with fork(2)) the process is created in the same PID namespace as the calling
process.

For further information on PID namespaces, see namespaces(7) and pid_namespaces(7).

Linux man-pages 6.7 2024-02-18 5

clone(2) System Calls Manual clone(2)

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWPID. This flag
can’t be specified in conjunction with CLONE_THREAD.

CLONE_NEWUSER
(This flag first became meaningful for clone() in Linux 2.6.23, the current clone() semantics
were merged in Linux 3.5, and the final pieces to make the user namespaces completely usable
were merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user namespace. If this flag is
not set, then (as with fork(2)) the process is created in the same user namespace as the calling
process.

For further information on user namespaces, see namespaces(7) and user_namespaces(7).

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have three capabilities:
CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID. Starting with Linux 3.8, no privi-
leges are needed to create a user namespace.

This flag can’t be specified in conjunction with CLONE_THREAD or CLONE_PARENT.
For security reasons, CLONE_NEWUSER cannot be specified in conjunction with
CLONE_FS.

CLONE_NEWUTS (since Linux 2.6.19)
If CLONE_NEWUTS is set, then create the process in a new UTS namespace, whose identi-
fiers are initialized by duplicating the identifiers from the UTS namespace of the calling
process. If this flag is not set, then (as with fork(2)) the process is created in the same UTS
namespace as the calling process.

For further information on UTS namespaces, see uts_namespaces(7).
Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWUTS.

CLONE_PARENT (since Linux 2.3.12)
If CLONE_PARENT is set, then the parent of the new child (as returned by getppid(2)) will
be the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the calling process.

Note that it is the parent process, as returned by getppid(2), which is signaled when the child
terminates, so that if CLONE_PARENT is set, then the parent of the calling process, rather
than the calling process itself, is signaled.

The CLONE_PARENT flag can’t be used in clone calls by the global init process (PID 1 in
the initial PID namespace) and init processes in other PID namespaces. This restriction pre-
vents the creation of multi-rooted process trees as well as the creation of unreapable zombies
in the initial PID namespace.

CLONE_PARENT_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by parent_tid (clone()) or cl_args.par-
ent_tid (clone3()) in the parent’s memory. (In Linux 2.5.32-2.5.48 there was a flag
CLONE_SETTID that did this.) The store operation completes before the clone call returns
control to user space.

CLONE_PID (Linux 2.0 to Linux 2.5.15)
If CLONE_PID is set, the child process is created with the same process ID as the calling
process. This is good for hacking the system, but otherwise of not much use. From Linux
2.3.21 onward, this flag could be specified only by the system boot process (PID 0). The flag
disappeared completely from the kernel sources in Linux 2.5.16. Subsequently, the kernel
silently ignored this bit if it was specified in the flags mask. Much later, the same bit was re-
cycled for use as the CLONE_PIDFD flag.

CLONE_PIDFD (since Linux 5.2)
If this flag is specified, a PID file descriptor referring to the child process is allocated and
placed at a specified location in the parent’s memory. The close-on-exec flag is set on this
new file descriptor. PID file descriptors can be used for the purposes described in
pidfd_open(2).

Linux man-pages 6.7 2024-02-18 6

clone(2)

System Calls Manual clone(2)

e When using clone3(), the PID file descriptor is placed at the location pointed to by
cl_args.pidfd.

* When using clone(), the PID file descriptor is placed at the location pointed to by par-
ent_tid. Since the parent tid argument is used to return the PID file descriptor,
CLONE_PIDFD cannot be used with CLONE_PARENT _SETTID when calling
clone().

It is currently not possible to use this flag together with CLONE_THREAD. This means that
the process identified by the PID file descriptor will always be a thread group leader.

If the obsolete CLONE_DETACHED flag is specified alongside CLONE_PIDFD when call-
ing clone(), an error is returned. An error also results if CLONE_DETACHED is specified
when calling clone3(). This error behavior ensures that the bit corresponding to
CLONE_DETACHED can be reused for further PID file descriptor features in the future.

CLONE_PTRACE (since Linux 2.2)

If CLONE_PTRACE is specified, and the calling process is being traced, then trace the child
also (see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)

The TLS (Thread Local Storage) descriptor is set to tls.

The interpretation of tls and the resulting effect is architecture dependent. On x86, tls is inter-
preted as a struct user_desc * (see set_thread_area(2)). On x86-64 it is the new value to be
set for the %fs base register (see the ARCH_SET_FS argument to arch_prctl(2)). On archi-
tectures with a dedicated TLS register, it is the new value of that register.

Use of this flag requires detailed knowledge and generally it should not be used except in li-
braries implementing threading.

CLONE_SIGHAND (since Linux 2.0)

If CLONE_SIGHAND is set, the calling process and the child process share the same table
of signal handlers. If the calling process or child process calls sigaction(2) to change the be-
havior associated with a signal, the behavior is changed in the other process as well. However,
the calling process and child processes still have distinct signal masks and sets of pending sig-
nals. So, one of them may block or unblock signals using sigprocmask(2) without affecting
the other process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the signal handlers of
the calling process at the time of the clone call. Calls to sigaction(2) performed later by one
of the processes have no effect on the other process.

Since Linux 2.6.0, the flags mask must also include CLONE_VM if CLONE_SIGHAND is
specified.

CLONE_STOPPED (since Linux 2.6.0)

If CLONE_STOPPED is set, then the child is initially stopped (as though it was sent a
SIGSTOP signal), and must be resumed by sending it a SIGCONT signal.

This flag was deprecated from Linux 2.6.25 onward, and was removed altogether in Linux
2.6.38. Since then, the kernel silently ignores it without error. Starting with Linux 4.6, the
same bit was reused for the CLONE_NEWCGROUP flag.

CLONE_SYSVSEM (since Linux 2.5.10)

If CLONE_SYSVSEM is set, then the child and the calling process share a single list of Sys-
tem V semaphore adjustment (semadj) values (see semop(2)). In this case, the shared list ac-
cumulates semadj values across all processes sharing the list, and semaphore adjustments are
performed only when the last process that is sharing the list terminates (or ceases sharing the
list using unshare(2)). If this flag is not set, then the child has a separate semadj list that is
initially empty.

CLONE_THREAD (since Linux 2.4.0)

If CLONE_THREAD is set, the child is placed in the same thread group as the calling
process. To make the remainder of the discussion of CLONE_THREAD more readable, the
term “thread" is used to refer to the processes within a thread group.

Linux man-pages 6.7 2024-02-18 7

clone(2)

System Calls Manual clone(2)

Thread groups were a feature added in Linux 2.4 to support the POSIX threads notion of a set
of threads that share a single PID. Internally, this shared PID is the so-called thread group
identifier (TGID) for the thread group. Since Linux 2.4, calls to getpid(2) return the TGID of
the caller.

The threads within a group can be distinguished by their (system-wide) unique thread 1Ds
(TID). A new thread’s TID is available as the function result returned to the caller, and a
thread can obtain its own TID using gettid(2).

When a clone call is made without specifying CLONE_THREAD, then the resulting thread
is placed in a new thread group whose TGID is the same as the thread’s TID. This thread is
the leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as the process
that made the clone call (i.e., like CLONE_PARENT), so that calls to getppid(2) return the
same value for all of the threads in a thread group. When a CLONE_THREAD thread termi-
nates, the thread that created it is not sent a SIGCHLD (or other termination) signal; nor can
the status of such a thread be obtained using wait(2). (The thread is said to be detached.)

After all of the threads in a thread group terminate the parent process of the thread group is
sent a SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads other than the
thread group leader are terminated, and the new program is executed in the thread group
leader.

If one of the threads in a thread group creates a child using fork(2), then any thread in the
group can wait(2) for that child.

Since Linux 2.5.35, the flags mask must also include CLONE_SIGHAND if
CLONE_THREAD is specified (and note that, since Linux 2.6.0, CLONE_SIGHAND also
requires CLONE_VM to be included).

Signal dispositions and actions are process-wide: if an unhandled signal is delivered to a
thread, then it will affect (terminate, stop, continue, be ignored in) all members of the thread

group.
Each thread has its own signal mask, as set by sigprocmask(2).

A signal may be process-directed or thread-directed. A process-directed signal is targeted at a
thread group (i.e., a TGID), and is delivered to an arbitrarily selected thread from among those
that are not blocking the signal. A signal may be process-directed because it was generated by
the kernel for reasons other than a hardware exception, or because it was sent using kill(2) or
sigqueue(3). A thread-directed signal is targeted at (i.e., delivered to) a specific thread. A sig-
nal may be thread directed because it was sent using tgkill(2) or pthread_sigqueue(3), or be-
cause the thread executed a machine language instruction that triggered a hardware exception
(e.g., invalid memory access triggering SIGSEGV or a floating-point exception triggering
SIGFPE).

A call to sigpending(2) returns a signal set that is the union of the pending process-directed
signals and the signals that are pending for the calling thread.

If a process-directed signal is delivered to a thread group, and the thread group has installed a
handler for the signal, then the handler is invoked in exactly one, arbitrarily selected member
of the thread group that has not blocked the signal. If multiple threads in a group are waiting
to accept the same signal using sigwaitinfo(2), the kernel will arbitrarily select one of these
threads to receive the signal.

CLONE_UNTRACED (since Linux 2.5.46)

If CLONE_UNTRACED is specified, then a tracing process cannot force
CLONE_PTRACE on this child process.

CLONE_VFORK (since Linux 2.2)

If CLONE_VFORK is set, the execution of the calling process is suspended until the child
releases its virtual memory resources via a call to execve(2) or _exit(2) (as with vfork(2)).

If CLONE_VFORK is not set, then both the calling process and the child are schedulable af-
ter the call, and an application should not rely on execution occurring in any particular order.

Linux man-pages 6.7 2024-02-18 8

clone(2) System Calls Manual clone(2)

CLONE_VM (since Linux 2.0)
If CLONE_VM is set, the calling process and the child process run in the same memory
space. In particular, memory writes performed by the calling process or by the child process
are also visible in the other process. Moreover, any memory mapping or unmapping per-
formed with mmap(2) or munmap(2) by the child or calling process also affects the other
process.

If CLONE_VM is not set, the child process runs in a separate copy of the memory space of
the calling process at the time of the clone call. Memory writes or file mappings/unmappings
performed by one of the processes do not affect the other, as with fork(2).

If the CLONE_VM flag is specified and the CLONE_VFORK flag is not specified, then any
alternate signal stack that was established by sigaltstack(2) is cleared in the child process.

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of execution. On failure,
-1 isreturned in the caller’s context, no child process is created, and errno is set to indicate the error.

ERRORS
EACCES (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the restrictions (described in
cgroups(7)) on placing the child process into the version 2 cgroup referred to by
cl_args.cgroup are not met.

EAGAIN
Too many processes are already running; see fork(2).

EBUSY (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor specified in
cl_args.cgroup refers to a version 2 cgroup in which a domain controller is enabled.

EEXIST (clone3() only)
One (or more) of the PIDs specified in set_tid already exists in the corresponding PID name-
space.

EINVAL
Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified in the flags
mask.

EINVAL
CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was not. (Since
Linux 2.6.0.)

EINVAL
CLONE_THREAD was specified in the flags mask, but CLONE_SIGHAND was not.
(Since Linux 2.5.35.)

EINVAL
CLONE_THREAD was specified in the flags mask, but the current process previously called
unshare(2) with the CLONE_NEWRPID flag or used setns(2) to reassociate itself with a PID
namespace.

EINVAL
Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

EINVAL (since Linux 3.9)
Both CLONE_NEWUSER and CLONE_FS were specified in the flags mask.

EINVAL
Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the flags mask.

EINVAL
CLONE_NEWPID and one (or both) of CLONE_THREAD or CLONE_PARENT were
specified in the flags mask.

EINVAL
CLONE_NEWUSER and CLONE_THREAD were specified in the flags mask.

Linux man-pages 6.7 2024-02-18 9

clone(2) System Calls Manual clone(2)

EINVAL (since Linux 2.6.32)
CLONE_PARENT was specified, and the caller is an init process.

EINVAL
Returned by the glibc clone() wrapper function when fn or stack is specified as NULL.

EINVAL
CLONE_NEWIPC was specified in the flags mask, but the kernel was not configured with
the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in the flags mask, but the kernel was not configured with
the CONFIG_NET_NS option.

EINVAL
CLONE_NEWPID was specified in the flags mask, but the kernel was not configured with
the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in the flags mask, but the kernel was not configured with
the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in the flags mask, but the kernel was not configured with
the CONFIG_UTS_NS option.

EINVAL
stack is not aligned to a suitable boundary for this architecture. For example, on aarch64,
stack must be a multiple of 16.

EINVAL (clone3() only)
CLONE_DETACHED was specified in the flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_DETACHED in the flags mask.

EINVAL
CLONE_PIDFD was specified together with CLONE_THREAD in the flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_PARENT_SETTID in the flags
mask.

EINVAL (clone3() only)
set_tid_size is greater than the number of nested PID namespaces.

EINVAL (clone3() only)
One of the PIDs specified in set_tid was an invalid.

EINVAL (clone3() only)
CLONE_THREAD or CLONE_PARENT was specified in the flags mask, but a signal was
specified in exit_signal.

EINVAL (AArch64 only, Linux 4.6 and earlier)
stack was not aligned to a 128-bit boundary.

ENOMEM
Cannot allocate sufficient memory to allocate a task structure for the child, or to copy those
parts of the caller’s context that need to be copied.

ENOSPC (since Linux 3.7)
CLONE_NEWPID was specified in the flags mask, but the limit on the nesting depth of PID
namespaces would have been exceeded; see pid_namespaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERYS)
CLONE_NEWUSER was specified in the flags mask, and the call would cause the limit on
the number of nested user namespaces to be exceeded. See user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

Linux man-pages 6.7 2024-02-18 10

clone(2) System Calls Manual clone(2)

ENOSPC (since Linux 4.9)
One of the values in the flags mask specified the creation of a new user namespace, but doing
so would have caused the limit defined by the corresponding file in /proc/sys/user to be ex-
ceeded. For further details, see namespaces(7).

EOPNOTSUPP (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor specified in
cl_args.cgroup refers to a version 2 cgroup that is in the domain invalid state.

EPERM
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET, CLONE_NEWNS,
CLONE_NEWPID, or CLONE_NEWUTS was specified by an unprivileged process
(process without CAP_SYS_ADMIN).

EPERM
CLONE_PID was specified by a process other than process 0. (This error occurs only on
Linux 2.5.15 and earlier.)

EPERM
CLONE_NEWUSER was specified in the flags mask, but either the effective user ID or the
effective group ID of the caller does not have a mapping in the parent namespace (see
user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in the flags mask and the caller is in a chroot environ-
ment (i.e., the caller’s root directory does not match the root directory of the mount namespace
in which it resides).

EPERM (clone3() only)
set_tid_size was greater than zero, and the caller lacks the CAP_SYS_ADMIN capability in
one or more of the user namespaces that own the corresponding PID namespaces.

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen only during a
trace.)

EUSERS (Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in the flags mask, and the limit on the number of nested
user namespaces would be exceeded. See the discussion of the ENOSPC error above.

VERSIONS
The glibc clone() wrapper function makes some changes in the memory pointed to by stack (changes
required to set the stack up correctly for the child) before invoking the clone() system call. So, in cases
where clone() is used to recursively create children, do not use the buffer employed for the parent’s
stack as the stack of the child.

On i386, clone() should not be called through vsyscall, but directly through int $0x80.

C library/kernel differences
The raw clone() system call corresponds more closely to fork(2) in that execution in the child continues
from the point of the call. As such, the fn and arg arguments of the clone() wrapper function are omit-
ted.

In contrast to the glibc wrapper, the raw clone() system call accepts NULL as a stack argument (and
clone3() likewise allows cl_args.stack to be NULL). In this case, the child uses a duplicate of the par-
ent’s stack. (Copy-on-write semantics ensure that the child gets separate copies of stack pages when ei-
ther process modifies the stack.) In this case, for correct operation, the CLONE_VM option should not
be specified. (If the child shares the parent’s memory because of the use of the CLONE_VM flag,
then no copy-on-write duplication occurs and chaos is likely to result.)

The order of the arguments also differs in the raw system call, and there are variations in the arguments
across architectures, as detailed in the following paragraphs.

The raw system call interface on x86-64 and some other architectures (including sh, tile, and alpha) is:

long clone(unsigned long flags, void *stack,
int *parent_tid, int *child_tid,
unsigned long tls);

Linux man-pages 6.7 2024-02-18 11

clone(2) System Calls Manual clone(2)

On x86-32, and several other common architectures (including score, ARM, ARM 64, PA-RISC, arc,
Power PC, xtensa, and MIPS), the order of the last two arguments is reversed:

long clone(unsigned long flags, void *stack,
int *parent_tid, unsigned long tls,
int *child_tid);
On the cris and s390 architectures, the order of the first two arguments is reversed:

long clone(void *stack, unsigned long flags,
int *parent_tid, int *child_tid,
unsigned long tls);

On the microblaze architecture, an additional argument is supplied:

long clone(unsigned long flags, void *stack,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);
blackfin, mé68k, and sparc
The argument-passing conventions on blackfin, mé8k, and sparc are different from the descriptions
above. For details, see the kernel (and glibc) source.
iab4
On ia64, a different interface is used:
int _ _clone2(int (*fn)(void *),
void *stack base, size t stack_size,
int flags, void *arg, ...
/* pid_t *parent_tid, struct user_desc *tls,
pid_t *child_tid */);
The prototype shown above is for the glibc wrapper function; for the system call itself, the prototype
can be described as follows (it is identical to the clone() prototype on microblaze):

long clone2(unsigned long flags, void *stack base,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);
__clone2() operates in the same way as clone(), except that stack_base points to the lowest address of
the child’s stack area, and stack_size specifies the size of the stack pointed to by stack_base.

STANDARDS
Linux.

HISTORY
clone3()
Linux 5.3.

Linux 2.4 and earlier
In the Linux 2.4.x series, CLONE_THREAD generally does not make the parent of the new thread the
same as the parent of the calling process. However, from Linux 2.4.7 to Linux 2.4.18 the
CLONE_THREAD flag implied the CLONE_PARENT flag (as in Linux 2.6.0 and later).

In Linux 2.4 and earlier, clone() does not take arguments parent_tid, tls, and child_tid.

NOTES
One use of these system calls is to implement threads: multiple flows of control in a program that run
concurrently in a shared address space.

The kemp(2) system call can be used to test whether two processes share various resources such as a
file descriptor table, System V semaphore undo operations, or a virtual address space.

Handlers registered using pthread_atfork(3) are not executed during a clone call.

BUGS
GNU C library versions 2.3.4 up to and including 2.24 contained a wrapper function for getpid(2) that
performed caching of PIDs. This caching relied on support in the glibc wrapper for clone(), but

Linux man-pages 6.7 2024-02-18 12

clone(2) System Calls Manual clone(2)

limitations in the implementation meant that the cache was not up to date in some circumstances. In
particular, if a signal was delivered to the child immediately after the clone() call, then a call to get-
pid(2) in a handler for the signal could return the PID of the calling process (“the parent™), if the clone
wrapper had not yet had a chance to update the PID cache in the child. (This discussion ignores the
case where the child was created using CLONE_THREAD, when getpid(2) should return the same
value in the child and in the process that called clone(), since the caller and the child are in the same
thread group. The stale-cache problem also does not occur if the flags argument includes
CLONE_VM.) To get the truth, it was sometimes necessary to use code such as the following:

#include <syscall.h>
pid_t mypid;

mypid = syscall(SYS_getpid);

Because of the stale-cache problem, as well as other problems noted in getpid(2), the PID caching fea-
ture was removed in glibc 2.25.

EXAMPLES
The following program demonstrates the use of clone() to create a child process that executes in a sepa-
rate UTS namespace. The child changes the hostname in its UTS namespace. Both parent and child
then display the system hostname, making it possible to see that the hostname differs in the UTS name-
spaces of the parent and child. For an example of the use of this program, see setns(2).

Within the sample program, we allocate the memory that is to be used for the child’s stack using
mmap(2) rather than malloc(3) for the following reasons:

« mmap(2) allocates a block of memory that starts on a page boundary and is a multiple of the page
size. This is useful if we want to establish a guard page (a page with protection PROT_NONE) at
the end of the stack using mprotect(2).

* We can specify the MAP_STACK flag to request a mapping that is suitable for a stack. For the
moment, this flag is a no-op on Linux, but it exists and has effect on some other systems, so we
should include it for portability

Program source
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman_h>
#include <sys/utsname.h>
#include <sys/wait._h>
#include <unistd.h>

static int /* Start function for cloned child */
childFunc(void *arg)

{
struct utsname uts;
/* Change hostname in UTS namespace of child. */

if (sethostname(arg, strlen(arg)) == -1)
err(EXIT_FAILURE, "sethostname™);

/* Retrieve and display hostname. */
if (uname(&uts) == -1)
err(EXIT_FAILURE, "uname'™);

Linux man-pages 6.7 2024-02-18 13

clone(2)

}

System Calls Manual clone(2)

printf('uts.nodename in child: %s\n', uts.nodename);

/* Keep the namespace open for a while, by sleeping.
This allows some experimentation—--for example, another
process might join the namespace. */

sleep(200);

return O; /* Child terminates now */

#define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

int

main(int argc, char *argv[])

{

char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */
pid_t pid;

struct utsname uts;

if (argc < 2) {
fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);
exi1t(EXIT_SUCCESS);

}

/* Allocate memory to be used for the stack of the child. */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
if (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap'™);

stackTop = stack + STACK _SIZE; /* Assume stack grows downward */

/* Create child that has its own UTS namespace;
child commences execution in childFunc(Q). */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);

if (pid == -1)
err(EXIT_FAILURE, "clone™);
printf('clone() returned %jd\n", (intmax_t) pid);

/* Parent falls through to here */
sleep(1); /* Give child time to change its hostname */

/* Display hostname in parent®s UTS namespace. This will be
different from hostname in child"s UTS namespace. */

if (uname(&uts) == -1)
err(EXIT_FAILURE, "uname'™);
printf('uts.nodename in parent: %s\n', uts.nodename);

if (waitpid(pid, NULL, 0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid™);
printf('child has terminated\n™);

exit(EXIT_SUCCESS);

Linux man-pages 6.7 2024-02-18 14

clone(2) System Calls Manual clone(2)

}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2), pidfd_open(2), set thread_area(2),
set_tid_address(2), setns(2), tkill(2), unshare(2), wait(2), capabilities(7), namespaces(7), pthreads(7)

Linux man-pages 6.7 2024-02-18 15

close(2) System Calls Manual close(2)

NAME

close — close a file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int close(int fd);

DESCRIPTION
close() closes a file descriptor, so that it no longer refers to any file and may be reused. Any record
locks (see fcntl(2)) held on the file it was associated with, and owned by the process, are removed re-
gardless of the file descriptor that was used to obtain the lock. This has some unfortunate conse-
quences and one should be extra careful when using advisory record locking. See fcntl(2) for discus-
sion of the risks and consequences as well as for the (probably preferred) open file description locks.

If fd is the last file descriptor referring to the underlying open file description (see open(2)), the re-
sources associated with the open file description are freed; if the file descriptor was the last reference to
a file which has been removed using unlink(2), the file is deleted.

RETURN VALUE
close() returns zero on success. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EBADF
fd isn’t a valid open file descriptor.

EINTR
The close() call was interrupted by a signal; see signal(7).

EIO An 1/O error occurred.

ENOSPC

EDQUOT
On NFS, these errors are not normally reported against the first write which exceeds the avail-
able storage space, but instead against a subsequent write(2), fsync(2), or close().

See NOTES for a discussion of why close() should not be retried after an error.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A successful close does not guarantee that the data has been successfully saved to disk, as the kernel
uses the buffer cache to defer writes. Typically, filesystems do not flush buffers when a file is closed.
If you need to be sure that the data is physically stored on the underlying disk, use fsync(2). (It will de-
pend on the disk hardware at this point.)

The close-on-exec file descriptor flag can be used to ensure that a file descriptor is automatically closed
upon a successful execve(2); see fcntl(2) for details.

Multithreaded processes and close()
It is probably unwise to close file descriptors while they may be in use by system calls in other threads
in the same process. Since a file descriptor may be reused, there are some obscure race conditions that
may cause unintended side effects.

Furthermore, consider the following scenario where two threads are performing operations on the same
file descriptor:

(1) One thread is blocked in an 1/0 system call on the file descriptor. For example, it is trying to
write(2) to a pipe that is already full, or trying to read(2) from a stream socket which currently
has no available data.

Linux man-pages 6.7 2023-10-31 1

close(2) System Calls Manual close(2)

(2) Another thread closes the file descriptor.

The behavior in this situation varies across systems. On some systems, when the file descriptor is
closed, the blocking system call returns immediately with an error.

On Linux (and possibly some other systems), the behavior is different: the blocking 1/0 system call
holds a reference to the underlying open file description, and this reference keeps the description open
until the I/O system call completes. (See open(2) for a discussion of open file descriptions.) Thus, the
blocking system call in the first thread may successfully complete after the close() in the second thread.

Dealing with error returns from close()
A careful programmer will check the return value of close(), since it is quite possible that errors on a
previous write(2) operation are reported only on the final close() that releases the open file description.
Failing to check the return value when closing a file may lead to silent loss of data. This can especially
be observed with NFS and with disk quota.

Note, however, that a failure return should be used only for diagnostic purposes (i.e., a warning to the
application that there may still be 1/0 pending or there may have been failed 1/0) or remedial purposes
(e.g., writing the file once more or creating a backup).

Retrying the close() after a failure return is the wrong thing to do, since this may cause a reused file de-
scriptor from another thread to be closed. This can occur because the Linux kernel always releases the
file descriptor early in the close operation, freeing it for reuse; the steps that may return an error, such
as flushing data to the filesystem or device, occur only later in the close operation.

Many other implementations similarly always close the file descriptor (except in the case of EBADF,
meaning that the file descriptor was invalid) even if they subsequently report an error on return from
close(). POSIX.1 is currently silent on this point, but there are plans to mandate this behavior in the
next major release of the standard.

A careful programmer who wants to know about 1/O errors may precede close() with a call to fsync(2).
The EINTR error is a somewhat special case. Regarding the EINTR error, POSIX.1-2008 says:

If close() is interrupted by a signal that is to be caught, it shall return -1 with errno set to
EINTR and the state of fildes is unspecified.

This permits the behavior that occurs on Linux and many other implementations, where, as with other
errors that may be reported by close(), the file descriptor is guaranteed to be closed. However, it also
permits another possibility: that the implementation returns an EINTR error and keeps the file descrip-
tor open. (According to its documentation, HP-UX’s close() does this.) The caller must then once
more use close() to close the file descriptor, to avoid file descriptor leaks. This divergence in imple-
mentation behaviors provides a difficult hurdle for portable applications, since on many implementa-
tions, close() must not be called again after an EINTR error, and on at least one, close() must be called
again. There are plans to address this conundrum for the next major release of the POSIX.1 standard.

SEE ALSO
close_range(2), fentl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

Linux man-pages 6.7 2023-10-31 2

close_range(2) System Calls Manual close_range(2)

NAME

close_range — close all file descriptors in a given range
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE [* See feature_test_macros(7) */
#include <unistd.h>

#include <linux/close_range.h> /* Definition of CLOSE_RANGE_*
constants */

int close_range(unsigned int first, unsigned int last, int flags);

DESCRIPTION
The close_range() system call closes all open file descriptors from first to last (included).

Errors closing a given file descriptor are currently ignored.
flags is a bit mask containing 0 or more of the following:

CLOSE_RANGE_CLOEXEC (since Linux 5.11)
Set the close-on-exec flag on the specified file descriptors, rather than immediately closing
them.

CLOSE_RANGE_UNSHARE
Unshare the specified file descriptors from any other processes before closing them, avoiding
races with other threads sharing the file descriptor table.

RETURN VALUE
On success, close_range() returns 0. On error, —1 is returned and errno is set to indicate the error.

ERRORS
EINVAL
flags is not valid, or first is greater than last.

The following can occur with CLOSE_RANGE_UNSHARE (when constructing the new descriptor
table):

EMFILE
The number of open file descriptors exceeds the limit specified in /proc/sys/fs/nr_open (see
proc(5)). This error can occur in situations where that limit was lowered before a call to
close_range() where the CLOSE_RANGE_UNSHARE flag is specified.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
None.

HISTORY
FreeBSD. Linux 5.9, glibc 2.34.

NOTES
Closing all open file descriptors
To avoid blindly closing file descriptors in the range of possible file descriptors, this is sometimes im-
plemented (on Linux) by listing open file descriptors in /proc/self/fd/ and calling close(2) on each one.
close_range() can take care of this without requiring /proc and within a single system call, which pro-
vides significant performance benefits.

Closing file descriptors before exec
File descriptors can be closed safely using

/* we don’t want anything past stderr here */
close_range(3, ~0U, CLOSE_RANGE_UNSHARE);
execve(..-.);

CLOSE_RANGE_UNSHARE is conceptually equivalent to
unshare(CLONE_FILES);

Linux man-pages 6.7 2024-02-25 1

close_range(2) System Calls Manual close_range(2)

close_range(first, last, 0);

but can be more efficient: if the unshared range extends past the current maximum number of file de-
scriptors allocated in the caller’s file descriptor table (the common case when last is ~0U), the kernel
will unshare a new file descriptor table for the caller up to first, copying as few file descriptors as pos-
sible. This avoids subsequent close(2) calls entirely; the whole operation is complete once the table is
unshared.

Closing files on exec

This is particularly useful in cases where multiple pre-exec setup steps risk conflicting with each other.
For example, setting up a seccomp(2) profile can conflict with a close_range() call: if the file descrip-
tors are closed before the seccomp(2) profile is set up, the profile setup can’t use them itself, or control
their closure; if the file descriptors are closed afterwards, the seccomp profile can’t block the
close_range() call or any fallbacks. Using CLOSE_RANGE_CLOEXEC avoids this: the descriptors
can be marked before the seccomp(2) profile is set up, and the profile can control access to
close_range() without affecting the calling process.

EXAMPLES

The program shown below opens the files named in its command-line arguments, displays the list of
files that it has opened (by iterating through the entries in /proc/P1D/fd), uses close_range() to close all
file descriptors greater than or equal to 3, and then once more displays the process’s list of open files.
The following example demonstrates the use of the program:

$ touch /tmp/a /tmp/b /tmp/c

$./a.out /tmp/a /tmp/b /tmp/c
/tmp/a opened as FD 3

/tmp/b opened as FD 4

/tmp/c opened as FD 5
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /tmp/a
/proc/self/fd/4 ==> /tmp/b
/proc/self/fd/5 ==> /tmp/b
/proc/self/fd/6 ==> /proc/9005/fd
========= About to call close_range() =======
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /proc/9005/fd

Note that the lines showing the pathname /proc/9005/fd result from the calls to opendir(3).

Program source

#define _GNU_SOURCE
#include <dirent._h>
#include <fcntl.h>

#include <limits._h>
#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>

/* Show the contents of the symbolic links in /proc/self/fd */

static void
show_fds(void)

{
DIR *dirp;
char path[PATH_MAX], target[PATH_MAX];
ssize_ t len;

struct dirent *dp;

Linux man-pages 6.7 2024-02-25 2

close_range(2) System Calls Manual close_range(2)

dirp = opendir("/proc/self/fd™");

if (dirp == NULL) {
perror(Topendir™);
exit(EXIT_FAILURE);
b

for (;) {
dp = readdir(dirp);
if (dp == NULL)
break;

if (dp—>d_type == DT_LNK) {
snprintf(path, sizeof(path), "/proc/self/fd/%s",
dp—>d_name) ;

len = readlink(path, target, sizeof(target));
printf(""%s ==> %.*s\n", path, (int) len, target);

}

closedir(dirp);
}

int
main(int argc, char *argv[])

{
int fd;

for (size_t j = 1; j < argc; j++) {
fd = open(argv[j], O _RDONLY);

if (fd == -1) {
perror(argv[il);

exit(EXIT_FAILURE);

}

printf("'%s opened as FD %d\n", argv[j], fd);

}

show_fds();

printf("'========= About to call close_range() =======\n"");

if (close_range(3, ~0U, O

perror('close_range™);

exit(EXIT_FAILURE);
}

show_fds();
exit(EXIT_FAILURE);

}

SEE ALSO
close(2)

= -1) {

Linux man-pages 6.7 2024-02-25

connect(2) System Calls Manual connect(2)

NAME

connect — initiate a connection on a socket
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
The connect() system call connects the socket referred to by the file descriptor sockfd to the address
specified by addr. The addrlen argument specifies the size of addr. The format of the address in addr
is determined by the address space of the socket sockfd; see socket(2) for further details.

If the socket sockfd is of type SOCK_DGRAM, then addr is the address to which datagrams are sent
by default, and the only address from which datagrams are received. If the socket is of type
SOCK_STREAM or SOCK_SEQPACKET, this call attempts to make a connection to the socket that
is bound to the address specified by addr.

Some protocol sockets (e.g., UNIX domain stream sockets) may successfully connect() only once.

Some protocol sockets (e.g., datagram sockets in the UNIX and Internet domains) may use connect()
multiple times to change their association.

Some protocol sockets (e.g., TCP sockets as well as datagram sockets in the UNIX and Internet do-
mains) may dissolve the association by connecting to an address with the sa_family member of sock-
addr set to AF_UNSPEC,; thereafter, the socket can be connected to another address. (AF_UNSPEC
is supported since Linux 2.2.)

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, —1 is returned, and errno is set to in-
dicate the error.

ERRORS

The following are general socket errors only. There may be other domain-specific error codes.

EACCES
For UNIX domain sockets, which are identified by pathname: Write permission is denied on
the socket file, or search permission is denied for one of the directories in the path prefix. (See
also path_resolution(7).)

EACCES

EPERM

The user tried to connect to a broadcast address without having the socket broadcast flag en-
abled or the connection request failed because of a local firewall rule.

EACCES
It can also be returned if an SELinux policy denied a connection (for example, if there is a
policy saying that an HTTP proxy can only connect to ports associated with HTTP servers,
and the proxy tries to connect to a different port).

EADDRINUSE
Local address is already in use.

EADDRNOTAVAIL
(Internet domain sockets) The socket referred to by sockfd had not previously been bound to
an address and, upon attempting to bind it to an ephemeral port, it was determined that all port
numbers in the ephemeral port range are currently in use. See the discussion of
Iproc/sys/net/ipv4/ip_local_port_range in ip(7).

EAFNOSUPPORT
The passed address didn’t have the correct address family in its sa_family field.

EAGAIN
For nonblocking UNIX domain sockets, the socket is nonblocking, and the connection cannot
be completed immediately. For other socket families, there are insufficient entries in the

Linux man-pages 6.7 2023-11-01 1

connect(2) System Calls Manual connect(2)

routing cache.

EALREADY
The socket is nonblocking and a previous connection attempt has not yet been completed.

EBADF
sockfd is not a valid open file descriptor.

ECONNREFUSED
A connect() on a stream socket found no one listening on the remote address.

EFAULT
The socket structure address is outside the user’s address space.

EINPROGRESS
The socket is nonblocking and the connection cannot be completed immediately. (UNIX do-
main sockets failed with EAGAIN instead.) It is possible to select(2) or poll(2) for comple-
tion by selecting the socket for writing. After select(2) indicates writability, use getsockopt(2)
to read the SO_ERROR option at level SOL_SOCKET to determine whether connect()
completed successfully (SO_ERROR is zero) or unsuccessfully (SO_ERROR is one of the
usual error codes listed here, explaining the reason for the failure).

EINTR
The system call was interrupted by a signal that was caught; see signal(7).
EISCONN
The socket is already connected.
ENETUNREACH
Network is unreachable.
ENOTSOCK
The file descriptor sockfd does not refer to a socket.
EPROTOTYPE

The socket type does not support the requested communications protocol. This error can oc-
cur, for example, on an attempt to connect a UNIX domain datagram socket to a stream
socket.

ETIMEDOUT
Timeout while attempting connection. The server may be too busy to accept new connections.
Note that for IP sockets the timeout may be very long when syncookies are enabled on the
server.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD, (connect() first appeared in 4.2BSD).

NOTES
If connect() fails, consider the state of the socket as unspecified. Portable applications should close the
socket and create a new one for reconnecting.

EXAMPLES
An example of the use of connect() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), getsockname(2), listen(2), socket(2), path_resolution(7), selinux(8)

Linux man-pages 6.7 2023-11-01 2

copy_file_range(2) System Calls Manual copy_file_range(2)

NAME

copy_file_range — Copy a range of data from one file to another
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE
#define FILE_OFFSET _BITS 64
#include <unistd.h>

ssize_t copy_file_range(int fd_in, off_t * Nullable off in,
int fd_out, off t* Nullable off _out,
size_t len, unsigned int flags);

DESCRIPTION
The copy_file_range() system call performs an in-kernel copy between two file descriptors without the
additional cost of transferring data from the kernel to user space and then back into the kernel. It
copies up to len bytes of data from the source file descriptor fd_in to the target file descriptor fd_out,
overwriting any data that exists within the requested range of the target file.

The following semantics apply for off_in, and similar statements apply to off out:

o If off_in is NULL, then bytes are read from fd_in starting from the file offset, and the file offset is
adjusted by the number of bytes copied.

o If off_in is not NULL, then off in must point to a buffer that specifies the starting offset where
bytes from fd_in will be read. The file offset of fd_in is not changed, but off in is adjusted appro-
priately.

fd_in and fd_out can refer to the same file. If they refer to the same file, then the source and target

ranges are not allowed to overlap.

The flags argument is provided to allow for future extensions and currently must be set to 0.

RETURN VALUE
Upon successful completion, copy_file_range() will return the number of bytes copied between files.
This could be less than the length originally requested. If the file offset of fd_in is at or past the end of
file, no bytes are copied, and copy_file_range() returns zero.

On error, copy_file_range() returns —1 and errno is set to indicate the error.

ERRORS
EBADF
One or more file descriptors are not valid.
EBADF
fd_in is not open for reading; or fd_out is not open for writing.
EBADF
The O_APPEND flag is set for the open file description (see open(2)) referred to by the file
descriptor fd_out.
EFBIG
An attempt was made to write at a position past the maximum file offset the kernel supports.
EFBIG

An attempt was made to write a range that exceeds the allowed maximum file size. The maxi-
mum file size differs between filesystem implementations and can be different from the maxi-
mum allowed file offset.

EFBIG
An attempt was made to write beyond the process’s file size resource limit. This may also re-
sult in the process receiving a SIGXFSZ signal.

EINVAL
The flags argument is not 0.

Linux man-pages 6.7 2023-10-31 1

copy_file_range(2) System Calls Manual copy_file_range(2)

EINVAL
fd_in and fd_out refer to the same file and the source and target ranges overlap.

EINVAL
Either fd_in or fd_out is not a regular file.

EIO Alow-level I/O error occurred while copying.

EISDIR
Either fd_in or fd_out refers to a directory.

ENOMEM
Out of memory.

ENOSPC
There is not enough space on the target filesystem to complete the copy.

EOPNOTSUPP (since Linux 5.19)
The filesystem does not support this operation.

EOVERFLOW
The requested source or destination range is too large to represent in the specified data types.

EPERM
fd_out refers to an immutable file.

ETXTBSY
Either fd_in or fd_out refers to an active swap file.

EXDEV (before Linux 5.3)
The files referred to by fd_in and fd_out are not on the same filesystem.

EXDEV (since Linux 5.19)
The files referred to by fd_in and fd_out are not on the same filesystem, and the source and
target filesystems are not of the same type, or do not support cross-filesystem copy.

VERSIONS

A major rework of the kernel implementation occurred in Linux 5.3. Areas of the API that weren’t
clearly defined were clarified and the API bounds are much more strictly checked than on earlier ker-
nels.

Since Linux 5.19, cross-filesystem copies can be achieved when both filesystems are of the same type,
and that filesystem implements support for it. See BUGS for behavior prior to Linux 5.19.

Applications should target the behaviour and requirements of Linux 5.19, that was also backported to
earlier stable kernels.

STANDARDS

Linux, GNU.

HISTORY

Linux 4.5, but glibc 2.27 provides a user-space emulation when it is not available.

NOTES

BUGS

If fd_in is a sparse file, then copy_file_range() may expand any holes existing in the requested range.
Users may benefit from calling copy_file_range() in a loop, and using the Iseek(2) SEEK_DATA and
SEEK_HOLE operations to find the locations of data segments.

copy_file_range() gives filesystems an opportunity to implement "copy acceleration™ techniques, such
as the use of reflinks (i.e., two or more inodes that share pointers to the same copy-on-write disk
blocks) or server-side-copy (in the case of NFS).

_FILE_OFFSET _BITS should be defined to be 64 in code that uses non-null off_in or off out or that
takes the address of copy_file_range, if the code is intended to be portable to traditional 32-bit x86 and
ARM platforms where off_t’s width defaults to 32 bits.

In Linux 5.3 to Linux 5.18, cross-filesystem copies were implemented by the kernel, if the operation
was not supported by individual filesystems. However, on some virtual filesystems, the call failed to
copy, while still reporting success.

Linux man-pages 6.7 2023-10-31 2

copy_file_range(2) System Calls Manual copy_file_range(2)

EXAMPLES
#define GNU_SOURCE
#define FILE_OFFSET BITS 64
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat._h>
#include <unistd.h>

int

main(int argc, char *argv[])

{
int fd_in, fd _out;
off t len, ret;

struct stat stat;

if (argc 1= 3) {
fprintf(stderr, "Usage: %s <source> <destination>\n", argv[0]);
exit(EXIT_FAILURE);

3

fd_in = open(argv[1l], O_RDONLY);

if (fd_in == -1) {
perror(“open (argv[1i])'™);
exit(EXIT_FAILURE);

3

if (fstat(fd_in, &stat) == -1) {
perror(“'fstat');
exit(EXIT_FAILURE);

3

len = stat.st _size;

fd_out = open(argv[2], O_CREAT | O_WRONLY | O_TRUNC, 0644);
if (fd_out == -1) {

perror(“'open (argv[2])');

exit(EXIT_FAILURE);
}

do {
ret = copy_Ffile_range(fd_in, NULL, fd_out, NULL, len, 0);
if (ret == -1) {
perror('copy_file_range');
exit(EXIT_FAILURE);
}

len —= ret;
} while (len > 0 && ret > 0);

close(fd_in);
close(fd_out);
exit(EXIT_SUCCESS);
}
SEE ALSO
Iseek(2), sendfile(2), splice(2)

Linux man-pages 6.7 2023-10-31 3

create_module(2) System Calls Manual create_module(2)

NAME
create_module — create a loadable module entry

SYNOPSIS
#include <linux/module.h>

[[deprecated]] caddr_t create_module(const char *name, size_t size);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

create_module() attempts to create a loadable module entry and reserve the kernel memory that will be
needed to hold the module. This system call requires privilege.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error, —1 is returned and er-
rno is set to indicate the error.

ERRORS
EEXIST
A module by that name already exists.
EFAULT
name is outside the program’s accessible address space.
EINVAL
The requested size is too small even for the module header information.
ENOMEM
The kernel could not allocate a contiguous block of memory large enough for the module.
ENOSYS
create_module() is not supported in this version of the kernel (e.g., Linux 2.6 or later).
EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capability).
STANDARDS
Linux.
HISTORY

Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc headers, but,
through a quirk of history, glibc versions before glibc 2.23 did export an ABI for this system call.
Therefore, in order to employ this system call, it was sufficient to manually declare the interface in your
code; alternatively, you could invoke the system call using syscall(2).

SEE ALSO
delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.7 2023-10-31 1

delete_module(2) System Calls Manual delete_module(2)

NAME
delete_module - unload a kernel module
LIBRARY
Standard C library (libc, —Ic)
SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_delete_module, const char *name, unsigned int flags);

Note: glibc provides no wrapper for delete_module(), necessitating the use of syscall(2).

DESCRIPTION

The delete_module() system call attempts to remove the unused loadable module entry identified by
name. If the module has an exit function, then that function is executed before unloading the module.
The flags argument is used to modify the behavior of the system call, as described below. This system
call requires privilege.

Module removal is attempted according to the following rules:

(1) If there are other loaded modules that depend on (i.e., refer to symbols defined in) this module,
then the call fails.

(2) Otherwise, if the reference count for the module (i.e., the number of processes currently using the
module) is zero, then the module is immediately unloaded.

(3) If amodule has a nonzero reference count, then the behavior depends on the bits set in flags. In
normal usage (see NOTES), the O_NONBLOCK flag is always specified, and the O_TRUNC
flag may additionally be specified.

The various combinations for flags have the following effect:

flags == O_NONBLOCK
The call returns immediately, with an error.

flags == (O_NONBLOCK | O_TRUNC)
The module is unloaded immediately, regardless of whether it has a nonzero reference
count.

(flags & O_NONBLOCK) ==
If flags does not specify O_NONBLOCK, the following steps occur:

* The module is marked so that no new references are permitted.

« If the module’s reference count is nonzero, the caller is placed in an uninterruptible
sleep state (TASK_UNINTERRUPTIBLE) until the reference count is zero, at
which point the call unblocks.

e The module is unloaded in the usual way.

The O_TRUNC flag has one further effect on the rules described above. By default, if a module has an
init function but no exit function, then an attempt to remove the module fails. However, if O_TRUNC
was specified, this requirement is bypassed.

Using the O_TRUNC flag is dangerous! If the kernel was not built with CONFIG_MOD-
ULE_FORCE_UNLOAD, this flag is silently ignored. (Normally, CONFIG_MOD-
ULE_FORCE_UNLOAD is enabled.) Using this flag taints the kernel (TAINT_FORCED_RM-
MOD).

RETURN VALUE

On success, zero is returned. On error, —1 is returned and errno is set to indicate the error.

ERRORS

EBUSY
The module is not "live" (i.e., it is still being initialized or is already marked for removal); or,
the module has an init function but has no exit function, and O_TRUNC was not specified in
flags.

Linux man-pages 6.7 2023-10-31 1

delete_module(2) System Calls Manual delete_module(2)

EFAULT
name refers to a location outside the process’s accessible address space.

ENOENT
No module by that name exists.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capability), or module
unloading is disabled (see /proc/sys/kernel/modules_disabled in proc(5)).

EWOULDBLOCK
Other modules depend on this module; or, O_NONBLOCK was specified in flags, but the
reference count of this module is nonzero and O_TRUNC was not specified in flags.

STANDARDS
Linux.

HISTORY
The delete_module() system call is not supported by glibc. No declaration is provided in glibc head-
ers, but, through a quirk of history, glibc versions before glibc 2.23 did export an ABI for this system
call. Therefore, in order to employ this system call, it is (before glibc 2.23) sufficient to manually de-
clare the interface in your code; alternatively, you can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the system call took only one argument:

int delete_module(const char *name);
If name is NULL, all unused modules marked auto-clean are removed.

Some further details of differences in the behavior of delete_module() in Linux 2.4 and earlier are not
currently explained in this manual page.

NOTES
The uninterruptible sleep that may occur if O_NONBLOCK is omitted from flags is considered unde-
sirable, because the sleeping process is left in an unkillable state. As at Linux 3.7, specifying O_NON-
BLOCK is optional, but in future kernels it is likely to become mandatory.

SEE ALSO
create_module(2), init_module(2), query_module(2), Ismod(8), modprobe(8), rmmod(8)

Linux man-pages 6.7 2023-10-31 2

dup(2) System Calls Manual dup(2)

NAME

dup, dup2, dup3 - duplicate a file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

#define _ GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of O_* constants */
#include <unistd.h>

int dup3(int oldfd, int newfd, int flags);

DESCRIPTION
The dup() system call allocates a new file descriptor that refers to the same open file description as the
descriptor oldfd. (For an explanation of open file descriptions, see open(2).) The new file descriptor
number is guaranteed to be the lowest-numbered file descriptor that was unused in the calling process.

After a successful return, the old and new file descriptors may be used interchangeably. Since the two
file descriptors refer to the same open file description, they share file offset and file status flags; for ex-
ample, if the file offset is modified by using Iseek(2) on one of the file descriptors, the offset is also
changed for the other file descriptor.

The two file descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec
flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the lowest-numbered un-
used file descriptor, it uses the file descriptor number specified in newfd. In other words, the file de-
scriptor newfd is adjusted so that it now refers to the same open file description as oldfd.

If the file descriptor newfd was previously open, it is closed before being reused; the close is performed
silently (i.e., any errors during the close are not reported by dup2())

The steps of closing and reusing the file descriptor newfd are performed atomically. This is important,
because trying to implement equivalent functionality using close(2) and dup() would be subject to race
conditions, whereby newfd might be reused between the two steps. Such reuse could happen because
the main program is interrupted by a signal handler that allocates a file descriptor, or because a parallel
thread allocates a file descriptor.

Note the following points:
« If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

« If oldfd is a valid file descriptor, and newfd has the same value as oldfd, then dup2() does nothing,
and returns newfd.
dup3()
dup3() is the same as dup2(), except that:
» The caller can force the close-on-exec flag to be set for the new file descriptor by specifying

O_CLOEXEC in flags. See the description of the same flag in open(2) for reasons why this may
be useful.

« If oldfd equals newfd, then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new file descriptor. On error, —1 is returned, and errno is set
to indicate the error.

ERRORS
EBADF
oldfd isn’t an open file descriptor.

Linux man-pages 6.7 2023-10-31 1

dup(2) System Calls Manual dup(2)

EBADF
newfd is out of the allowed range for file descriptors (see the discussion of
RLIMIT_NOFILE in getrlimit(2)).

EBUSY
(Linux only) This may be returned by dup2() or dup3() during a race condition with open(2)
and dup().

EINTR
The dup2() or dup3() call was interrupted by a signal; see signal(7).

EINVAL
(dup3()) flags contain an invalid value.

EINVAL
(dup3()) oldfd was equal to newfd.

EMFILE
The per-process limit on the number of open file descriptors has been reached (see the discus-
sion of RLIMIT_NOFILE in getrlimit(2)).

STANDARDS
dup()
dup2() POSIX.1-2008.
dup3() Linux.

HISTORY
dup()
dup2() POSIX.1-2001, SVr4, 4.3BSD.
dup3() Linux 2.6.27, glibc 2.9.

NOTES
The error returned by dup2() is different from that returned by fentl(..., F_DUPFD, ...) when newfd is
out of range. On some systems, dup2() also sometimes returns EINVAL like F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost. If this is of con-
cern, then—unless the program is single-threaded and does not allocate file descriptors in signal han-
dlers—the correct approach is not to close newfd before calling dup2(), because of the race condition
described above. Instead, code something like the following could be used:

/* Obtain a duplicate of "newfd" that can subsequently
be used to check for close() errors; an EBADF error
means that "newfd" was not open. */

tmpfd = dup(newfd);
if (tmpfd == -1 && errno != EBADF) {
/* Handle unexpected dup() error. */

}

/* Atomically duplicate "oldfd" on "newfd". */

if (dup2(oldfd, newfd) == -1) {
/* Handle dup2() error. */
}

/* Now check for close() errors on the file originally
referred to by "newfd". */

if (tmpfd 1= -1) {

if (close(tmpfd) == -1) {
/* Handle errors from close. */
3

Linux man-pages 6.7 2023-10-31 2

dup(2) System Calls Manual dup(2)

SEE ALSO
close(2), fentl(2), open(2), pidfd_getfd(2)

Linux man-pages 6.7 2023-10-31 3

epoll_create(2) System Calls Manual epoll_create(2)

NAME

epoll_create, epoll_createl — open an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_create(int size);
int epoll_createl(int flags);

DESCRIPTION
epoll_create() creates a new epoll(7) instance. Since Linux 2.6.8, the size argument is ignored, but
must be greater than zero; see HISTORY.

epoll_create() returns a file descriptor referring to the new epoll instance. This file descriptor is used
for all the subsequent calls to the epoll interface. When no longer required, the file descriptor returned
by epoll_create() should be closed by using close(2). When all file descriptors referring to an epoll in-
stance have been closed, the kernel destroys the instance and releases the associated resources for
reuse.

epoll_createl()
If flags is O, then, other than the fact that the obsolete size argument is dropped, epoll_createl() is the
same as epoll_create(). The following value can be included in flags to obtain different behavior:

EPOLL_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the description of
the O_CLOEXEC flag in open(2) for reasons why this may be useful.

RETURN VALUE
On success, these system calls return a file descriptor (a nonnegative integer). On error, =1 is returned,
and errno is set to indicate the error.

ERRORS
EINVAL
size is not positive.
EINVAL
(epoll_createl()) Invalid value specified in flags.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENOMEM
There was insufficient memory to create the kernel object.
STANDARDS
Linux.
HISTORY

epoll_create()
Linux 2.6, glibc 2.3.2.

epoll_createl()
Linux 2.6.27, glibc 2.9.

In the initial epoll_create() implementation, the size argument informed the kernel of the number of
file descriptors that the caller expected to add to the epoll instance. The kernel used this information as
a hint for the amount of space to initially allocate in internal data structures describing events. (If nec-
essary, the kernel would allocate more space if the caller’s usage exceeded the hint given in size.)
Nowadays, this hint is no longer required (the kernel dynamically sizes the required data structures
without needing the hint), but size must still be greater than zero, in order to ensure backward compati-
bility when new epoll applications are run on older kernels.

Prior to Linux 2.6.29, a /proc/sys/fs/epoll/max_user_instances kernel parameter limited live epolls for

Linux man-pages 6.7 2023-10-31 1

epoll_create(2) System Calls Manual epoll_create(2)

each real user ID, and caused epoll_create() to fail with EMFILE on overrun.

SEE ALSO
close(2), epoll_ctl(2), epoll_wait(2), epoll(7)

Linux man-pages 6.7 2023-10-31 2

epoll_ctl(2) System Calls Manual epoll_ctl(2)

NAME

epoll_ctl - control interface for an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd,
struct epoll_event *_Nullable event);
DESCRIPTION
This system call is used to add, modify, or remove entries in the interest list of the epoll(7) instance re-

ferred to by the file descriptor epfd. It requests that the operation op be performed for the target file de-
scriptor, fd.

Valid values for the op argument are:

EPOLL_CTL_ADD
Add an entry to the interest list of the epoll file descriptor, epfd. The entry includes the file
descriptor, fd, a reference to the corresponding open file description (see epoll(7) and
open(2)), and the settings specified in event.

EPOLL_CTL_MOD
Change the settings associated with fd in the interest list to the new settings specified in event.

EPOLL_CTL_DEL
Remove (deregister) the target file descriptor fd from the interest list. The event argument is
ignored and can be NULL (but see BUGS below).

The event argument describes the object linked to the file descriptor fd. The struct epoll_event is de-
scribed in epoll_event(3type).

The data member of the epoll_event structure specifies data that the kernel should save and then return
(via epoll_wait(2)) when this file descriptor becomes ready.

The events member of the epoll_event structure is a bit mask composed by ORing together zero or
more event types, returned by epoll_wait(2), and input flags, which affect its behaviour, but aren’t re-
turned. The available event types are:

EPOLLIN
The associated file is available for read(2) operations.

EPOLLOUT
The associated file is available for write(2) operations.

EPOLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connection. (This flag is
especially useful for writing simple code to detect peer shutdown when using edge-triggered
monitoring.)

EPOLLPRI
There is an exceptional condition on the file descriptor. See the discussion of POLLPRI in

poll(2).
EPOLLERR

Error condition happened on the associated file descriptor. This event is also reported for the
write end of a pipe when the read end has been closed.

epoll_wait(2) will always report for this event; it is not necessary to set it in events when call-
ing epoll_ctl().

EPOLLHUP
Hang up happened on the associated file descriptor.
epoll_wait(2) will always wait for this event; it is not necessary to set it in events when calling
epoll_ctl().

Note that when reading from a channel such as a pipe or a stream socket, this event merely in-
dicates that the peer closed its end of the channel. Subsequent reads from the channel will

Linux man-pages 6.7 2023-10-31 1

epoll_ctl(2) System Calls Manual epoll_ctl(2)

return O (end of file) only after all outstanding data in the channel has been consumed.
And the available input flags are:

EPOLLET
Requests edge-triggered notification for the associated file descriptor. The default behavior
for epoll is level-triggered. See epoll(7) for more detailed information about edge-triggered
and level-triggered notification.

EPOLLONESHOT (since Linux 2.6.2)
Requests one-shot notification for the associated file descriptor. This means that after an event
notified for the file descriptor by epoll_wait(2), the file descriptor is disabled in the interest list
and no other events will be reported by the epoll interface. The user must call epoll_ctl() with
EPOLL_CTL_MOD to rearm the file descriptor with a new event mask.

EPOLLWAKEUP (since Linux 3.5)

If EPOLLONESHOT and EPOLLET are clear and the process has the
CAP_BLOCK_SUSPEND capability, ensure that the system does not enter "suspend™ or "hi-
bernate™ while this event is pending or being processed. The event is considered as being
"processed" from the time when it is returned by a call to epoll_wait(2) until the next call to
epoll_wait(2) on the same epoll(7) file descriptor, the closure of that file descriptor, the re-
moval of the event file descriptor with EPOLL_CTL_DEL, or the clearing of EPOLL-
WAKEUP for the event file descriptor with EPOLL_CTL_MOD. See also BUGS.

EPOLLEXCLUSIVE (since Linux 4.5)

Sets an exclusive wakeup mode for the epoll file descriptor that is being attached to the target
file descriptor, fd. When a wakeup event occurs and multiple epoll file descriptors are at-
tached to the same target file using EPOLLEXCLUSIVE, one or more of the epoll file de-
scriptors will receive an event with epoll_wait(2). The default in this scenario (when
EPOLLEXCLUSIVE is not set) is for all epoll file descriptors to receive an event.
EPOLLEXCLUSIVE is thus useful for avoiding thundering herd problems in certain scenar-
i0S.

If the same file descriptor is in multiple epoll instances, some with the EPOLLEXCLUSIVE
flag, and others without, then events will be provided to all epoll instances that did not specify
EPOLLEXCLUSIVE, and at least one of the epoll instances that did specify EPOLLEX-
CLUSIVE.

The following values may be specified in conjunction with EPOLLEXCLUSIVE:
EPOLLIN, EPOLLOUT, EPOLLWAKEUP, and EPOLLET. EPOLLHUP and
EPOLLERR can also be specified, but this is not required: as usual, these events are always
reported if they occur, regardless of whether they are specified in events. Attempts to specify
other values in events yield the error EINVAL.

EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation; attempts to
employ it with EPOLL_CTL_MOD vyield an error. If EPOLLEXCLUSIVE has been set
using epoll_ctl(), then a subsequent EPOLL_CTL_MOD on the same epfd, fd pair yields an
error. A call to epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies the tar-
get file descriptor fd as an epoll instance will likewise fail. The error in all of these cases is
EINVAL.

RETURN VALUE
When successful, epoll_ctl() returns zero. When an error occurs, epoll_ctl() returns —1 and errno is set
to indicate the error.

ERRORS
EBADF
epfd or fd is not a valid file descriptor.

EEXIST
op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already registered with this
epoll instance.

EINVAL
epfd is not an epoll file descriptor, or fd is the same as epfd, or the requested operation op is
not supported by this interface.

Linux man-pages 6.7 2023-10-31 2

epoll_ctl(2) System Calls Manual epoll_ctl(2)

EINVAL
An invalid event type was specified along with EPOLLEXCLUSIVE in events.

EINVAL
op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

EINVAL
op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previously been applied
to this epfd, fd pair.

EINVAL
EPOLLEXCLUSIVE was specified in event and fd refers to an epoll instance.

ELOOP
fd refers to an epoll instance and this EPOLL_CTL_ADD operation would result in a circu-
lar loop of epoll instances monitoring one another or a nesting depth of epoll instances greater
than 5.

ENOENT
op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered with this epoll
instance.

ENOMEM
There was insufficient memory to handle the requested op control operation.

ENOSPC
The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered while trying to
register (EPOLL_CTL_ADD) a new file descriptor on an epoll instance. See epoll(7) for fur-
ther details.

EPERM
The target file fd does not support epoll. This error can occur if fd refers to, for example, a
regular file or a directory.

STANDARDS

Linux.

HISTORY

Linux 2.6, glibc 2.3.2.

NOTES

BUGS

The epoll interface supports all file descriptors that support poll(2).

Before Linux 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer in event, even
though this argument is ignored. Since Linux 2.6.9, event can be specified as NULL when using
EPOLL_CTL_DEL. Applications that need to be portable to kernels before Linux 2.6.9 should spec-
ify a non-null pointer in event.

If EPOLLWAKEUP is specified in flags, but the caller does not have the CAP_BLOCK_SUSPEND
capability, then the EPOLLWAKEUP flag is silently ignored. This unfortunate behavior is necessary
because no validity checks were performed on the flags argument in the original implementation, and
the addition of the EPOLLWAKEUP with a check that caused the call to fail if the caller did not have
the CAP_BLOCK_SUSPEND capability caused a breakage in at least one existing user-space applica-
tion that happened to randomly (and uselessly) specify this bit. A robust application should therefore
double check that it has the CAP_BLOCK_SUSPEND capability if attempting to use the EPOLL-
WAKEUP flag.

SEE ALSO

epoll_create(2), epoll_wait(2), poll(2), epoll(7)

Linux man-pages 6.7 2023-10-31 3

epoll_wait(2) System Calls Manual epoll_wait(2)

NAME

epoll_wait, epoll_pwait, epoll_pwait2 — wait for an 1/O event on an epoll file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/epoll.h>

int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *_Nullable sigmask);
int epoll_pwait2(int epfd, struct epoll_event *events,
int maxevents, const struct timespec *_Nullable timeout,
const sigset_t *_Nullable sigmask);

DESCRIPTION
The epoll_wait() system call waits for events on the epoll(7) instance referred to by the file descriptor
epfd. The buffer pointed to by events is used to return information from the ready list about file de-
scriptors in the interest list that have some events available. Up to maxevents are returned by
epoll_wait(). The maxevents argument must be greater than zero.

The timeout argument specifies the number of milliseconds that epoll_wait() will block. Time is mea-
sured against the CLOCK_MONOTONIC clock.

A call to epoll_wait() will block until either:
 afile descriptor delivers an event;

» the call is interrupted by a signal handler; or
» the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity, and kernel scheduling
delays mean that the blocking interval may overrun by a small amount. Specifying a timeout of -1
causes epoll_wait() to block indefinitely, while specifying a timeout equal to zero causes epoll_wait()
to return immediately, even if no events are available.

The struct epoll_event is described in epoll_event(3type).

The data field of each returned epoll_event structure contains the same data as was specified in the
most recent call to epoll_ctl(2) (EPOLL_CTL_ADD, EPOLL_CTL_MOD) for the corresponding
open file descriptor.

The events field is a bit mask that indicates the events that have occurred for the corresponding open
file description. See epoll_ctl(2) for a list of the bits that may appear in this mask.

epoll_pwait()
The relationship between epoll_wait() and epoll_pwait() is analogous to the relationship between se-
lect(2) and pselect(2): like pselect(2), epoll_pwait() allows an application to safely wait until either a
file descriptor becomes ready or until a signal is caught.

The following epoll_pwait() call:

ready = epoll_pwait(epfd, &events, maxevents, timeout, &sigmask);
is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);

ready = epoll_wait(epfd, &events, maxevents, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The sigmask argument may be specified as NULL, in which case epoll_pwait() is equivalent to
epoll_wait().

Linux man-pages 6.7 2024-03-03 1

epoll_wait(2) System Calls Manual epoll_wait(2)

epoll_pwait2()
The epoll_pwait2() system call is equivalent to epoll_pwait() except for the timeout argument. It
takes an argument of type timespec to be able to specify nanosecond resolution timeout. This argument
functions the same as in pselect(2) and ppoll(2). If timeout is NULL, then epoll_pwait2() can block
indefinitely.
RETURN VALUE
On success, epoll_wait() returns the number of file descriptors ready for the requested 1/0O operation, or

zero if no file descriptor became ready during the requested timeout milliseconds. On failure,
epoll_wait() returns —1 and errno is set to indicate the error.

ERRORS
EBADF
epfd is not a valid file descriptor.
EFAULT
The memory area pointed to by events is not accessible with write permissions.
EINTR
The call was interrupted by a signal handler before either (1) any of the requested events oc-
curred or (2) the timeout expired; see signal(7).
EINVAL
epfd is not an epoll file descriptor, or maxevents is less than or equal to zero.
STANDARDS
Linux.
HISTORY
epoll_wait()
Linux 2.6, glibc 2.3.2.
epoll_pwait()

Linux 2.6.19, glibc 2.6.

epoll_pwait2()
Linux 5.11.

NOTES
While one thread is blocked in a call to epoll_wait(), it is possible for another thread to add a file de-
scriptor to the waited-upon epoll instance. If the new file descriptor becomes ready, it will cause the
epoll_wait() call to unblock.

If more than maxevents file descriptors are ready when epoll_wait() is called, then successive
epoll_wait() calls will round robin through the set of ready file descriptors. This behavior helps avoid
starvation scenarios, where a process fails to notice that additional file descriptors are ready because it
focuses on a set of file descriptors that are already known to be ready.

Note that it is possible to call epoll_wait() on an epoll instance whose interest list is currently empty
(or whose interest list becomes empty because file descriptors are closed or removed from the interest
in another thread). The call will block until some file descriptor is later added to the interest list (in an-
other thread) and that file descriptor becomes ready.

C library/kernel differences

The raw epoll_pwait() and epoll_pwait2() system calls have a sixth argument, size_t sigsetsize, which
specifies the size in bytes of the sigmask argument. The glibc epoll_pwait() wrapper function specifies
this argument as a fixed value (equal to sizeof(sigset_t)).

BUGS
Before Linux 2.6.37, a timeout value larger than approximately LONG_MAX / HZ milliseconds is
treated as -1 (i.e., infinity). Thus, for example, on a system where sizeof(long) is 4 and the kernel HZ
value is 1000, this means that timeouts greater than 35.79 minutes are treated as infinity.

SEE ALSO
epoll_create(2), epoll_ctl(2), epoll(7)

Linux man-pages 6.7 2024-03-03 2

eventfd(2) System Calls Manual eventfd(2)

NAME

eventfd — create a file descriptor for event notification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/eventfd.h>
int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an "eventfd object"” that can be used as an event wait/notify mechanism by user-space
applications, and by the kernel to notify user-space applications of events. The object contains an un-
signed 64-bit integer (uint64_t) counter that is maintained by the kernel. This counter is initialized
with the value specified in the argument initval.

As its return value, eventfd() returns a new file descriptor that can be used to refer to the eventfd object.
The following values may be bitwise ORed in flags to change the behavior of eventfd():

EFD_CLOEXEC (since Linux 2.6.27)
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the description of
the O_CLOEXEC flag in open(2) for reasons why this may be useful.

EFD_NONBLOCK (since Linux 2.6.27)
Set the O_NONBLOCK file status flag on the open file description (see open(2)) referred to
by the new file descriptor. Using this flag saves extra calls to fcntl(2) to achieve the same re-
sult.

EFD_SEMAPHORE (since Linux 2.6.30)
Provide semaphore-like semantics for reads from the new file descriptor. See below.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.
The following operations can be performed on the file descriptor returned by eventfd():

read(2) Each successful read(2) returns an 8-byte integer. A read(2) fails with the error EINVAL if
the size of the supplied buffer is less than 8 bytes.

The value returned by read(2) is in host byte order—that is, the native byte order for integers
on the host machine.

The semantics of read(2) depend on whether the eventfd counter currently has a nonzero value
and whether the EFD_SEMAPHORE flag was specified when creating the eventfd file de-
scriptor:

« If EFD_SEMAPHORE was not specified and the eventfd counter has a nonzero value,
then a read(2) returns 8 bytes containing that value, and the counter’s value is reset to zero.

« |If EFD_SEMAPHORE was specified and the eventfd counter has a nonzero value, then a
read(2) returns 8 bytes containing the value 1, and the counter’s value is decremented by
1.

» If the eventfd counter is zero at the time of the call to read(2), then the call either blocks
until the counter becomes nonzero (at which time, the read(2) proceeds as described
above) or fails with the error EAGAIN if the file descriptor has been made nonblocking.

write(2)
A write(2) call adds the 8-byte integer value supplied in its buffer to the counter. The maxi-
mum value that may be stored in the counter is the largest unsigned 64-bit value minus 1 (i.e.,
Oxffffffffffffffe). If the addition would cause the counter’s value to exceed the maximum, then
the write(2) either blocks until a read(2) is performed on the file descriptor, or fails with the
error EAGAIN if the file descriptor has been made nonblocking.

A write(2) fails with the error EINVAL if the size of the supplied buffer is less than 8 bytes, or
if an attempt is made to write the value Oxfffffffffffffff.

poll(2)

Linux man-pages 6.7 2023-10-31 1

eventfd(2) System Calls Manual eventfd(2)

select(2)

(and similar)
The returned file descriptor supports poll(2) (and analogously epoll(7)) and select(2), as fol-
lows:

» The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN flag) if
the counter has a value greater than 0.

« The file descriptor is writable (the select(2) writefds argument; the poll(2) POLLOUT
flag) if it is possible to write a value of at least "1" without blocking.

« If an overflow of the counter value was detected, then select(2) indicates the file descriptor
as being both readable and writable, and poll(2) returns a POLLERR event. As noted
above, write(2) can never overflow the counter. However an overflow can occur if 2264
eventfd "signal posts" were performed by the KAIO subsystem (theoretically possible, but
practically unlikely). If an overflow has occurred, then read(2) will return that maximum

uint64_t value (i.e., OxfFFfFffFffffr).

The eventfd file descriptor also supports the other file-descriptor multiplexing APIs: pselect(2)
and ppoll(2).

close(2)
When the file descriptor is no longer required it should be closed. When all file descriptors as-
sociated with the same eventfd object have been closed, the resources for object are freed by
the kernel.

A copy of the file descriptor created by eventfd() is inherited by the child produced by fork(2). The du-
plicate file descriptor is associated with the same eventfd object. File descriptors created by eventfd()
are preserved across execve(2), unless the close-on-exec flag has been set.

RETURN VALUE
On success, eventfd() returns a new eventfd file descriptor. On error, —1 is returned and errno is set to
indicate the error.

ERRORS
EINVAL
An unsupported value was specified in flags.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENODEV
Could not mount (internal) anonymous inode device.
ENOMEM
There was insufficient memory to create a new eventfd file descriptor.
ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
eventfd() Thread safety | MT-Safe
VERSIONS

C library/kernel differences
There are two underlying Linux system calls: eventfd() and the more recent eventfd2(). The former
system call does not implement a flags argument. The latter system call implements the flags values
described above. The glibc wrapper function will use eventfd2() where it is available.

Additional glibc features
The GNU C library defines an additional type, and two functions that attempt to abstract some of the
details of reading and writing on an eventfd file descriptor:

typedef uint64_t eventfd t;

int eventfd _read(int fd, eventfd t *value);

Linux man-pages 6.7 2023-10-31 2

eventfd(2) System Calls Manual eventfd(2)

int eventfd_write(int fd, eventfd_t value);

The functions perform the read and write operations on an eventfd file descriptor, returning 0 if the cor-
rect number of bytes was transferred, or —1 otherwise.

STANDARDS
Linux, GNU.

HISTORY
eventfd()
Linux 2.6.22, glibc 2.8.

eventfd2()
Linux 2.6.27 (see VERSIONS). Since glibc 2.9, the eventfd() wrapper will employ the
eventfd2() system call, if it is supported by the kernel.

NOTES
Applications can use an eventfd file descriptor instead of a pipe (see pipe(2)) in all cases where a pipe
is used simply to signal events. The kernel overhead of an eventfd file descriptor is much lower than
that of a pipe, and only one file descriptor is required (versus the two required for a pipe).

When used in the kernel, an eventfd file descriptor can provide a bridge from kernel to user space, al-
lowing, for example, functionalities like KAIO (kernel AlO) to signal to a file descriptor that some op-
eration is complete.

A key point about an eventfd file descriptor is that it can be monitored just like any other file descriptor
using select(2), poll(2), or epoll(7). This means that an application can simultaneously monitor the
readiness of "traditional” files and the readiness of other kernel mechanisms that support the eventfd in-
terface. (Without the eventfd() interface, these mechanisms could not be multiplexed via select(2),
poll(2), or epoll(7).)

The current value of an eventfd counter can be viewed via the entry for the corresponding file descrip-
tor in the process’s /proc/ pid/fdinfo directory. See proc(5) for further details.

EXAMPLES
The following program creates an eventfd file descriptor and then forks to create a child process.
While the parent briefly sleeps, the child writes each of the integers supplied in the program’s com-
mand-line arguments to the eventfd file descriptor. When the parent has finished sleeping, it reads from
the eventfd file descriptor.

The following shell session shows a sample run of the program:

$ /a.out 12 47 14

Child writing 1 to efd

Child writing 2 to efd

Child writing 4 to efd

Child writing 7 to efd

Child writing 14 to efd

Child completed write loop
Parent about to read

Parent read 28 (0Ox1c) from efd

Program source

#include <err.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/eventfd.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int efd;

uinté4_t u;

Linux man-pages 6.7 2023-10-31 3

eventfd(2)

ssize_

System Calls Manual

S;

if (argc < 2) {

}

fprintf(stderr, "Usage: %s <num>..._.\n", argv[0]);
exit(EXIT_FAILURE);

efd = eventfd(0, 0);
it (efd == -1)

err(EXIT_FAILURE, "eventfd'™);

switch (fork()) {

case O:
for (size_t j = 1; j < argc; j++) {

default:
sleep(2);

case —1:
err(EXIT_FAILURE, "fork'™);

}
}

SEE ALSO

futex(2), pipe(2), poll(2),
sem_overview(7)

Linux man-pages 6.7

printf(’'Child writing %s to efd\n", argv[j]);
u = strtoull(argv[j], NULL, 0);
/* strtoull () allows various bases */
s = write(efd, &u, sizeof(uint64_t));
if (s !'= sizeof(uint64_t))
err(EXIT_FAILURE, "write'™);

printf('Child completed write loop\n');

exit(EXIT_SUCCESS);

printf("'Parent about to read\n™);

read(efd, &u, sizeof(uint64_t));

if (s !'= sizeof(uint64_t))

err(EXIT_FAILURE, "read");

2023-10-31

eventfd(2)

printf('Parent read %"PRIu64™ (%#"PRIx64') from efd\n', u, u);
exi1t(EXIT_SUCCESS);

read(2), select(2), signalfd(2), timerfd_create(2), write(2), epoll(7),

execve(2) System Calls Manual execve(2)

NAME

execve — execute program

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <unistd.h>

int execve(const char * pathname, char *const _Nullable argv[],
char *const _Nullable envp[]);

DESCRIPTION

execve() executes the program referred to by pathname. This causes the program that is currently be-
ing run by the calling process to be replaced with a new program, with newly initialized stack, heap,
and (initialized and uninitialized) data segments.

pathname must be either a binary executable, or a script starting with a line of the form:
#linterpreter [optional-arg]
For details of the latter case, see "Interpreter scripts” below.

argv is an array of pointers to strings passed to the new program as its command-line arguments. By
convention, the first of these strings (i.e., argv[0]) should contain the filename associated with the file
being executed. The argv array must be terminated by a null pointer. (Thus, in the new program,
argv[argc] will be a null pointer.)

envp is an array of pointers to strings, conventionally of the form key=value, which are passed as the
environment of the new program. The envp array must be terminated by a null pointer.

This manual page describes the Linux system call in detail; for an overview of the nomenclature and
the many, often preferable, standardised variants of this function provided by libc, including ones that
search the PATH environment variable, see exec(3).

The argument vector and environment can be accessed by the new program’s main function, when it is
defined as:

int main(int argc, char *argv[], char *envp[])

Note, however, that the use of a third argument to the main function is not specified in POSIX.1; ac-
cording to POSIX.1, the environment should be accessed via the external variable environ(7).

execve() does not return on success, and the text, initialized data, uninitialized data (bss), and stack of
the calling process are overwritten according to the contents of the newly loaded program.

If the current program is being ptraced, a SIGTRAP signal is sent to it after a successful execve().

If the set-user-1D bit is set on the program file referred to by pathname, then the effective user 1D of the
calling process is changed to that of the owner of the program file. Similarly, if the set-group-ID bit is
set on the program file, then the effective group ID of the calling process is set to the group of the pro-
gram file.

The aforementioned transformations of the effective IDs are not performed (i.e., the set-user-1D and
set-group-ID bits are ignored) if any of the following is true:

» the no_new_privs attribute is set for the calling thread (see prctl(2));

« the underlying filesystem is mounted nosuid (the MS_NOSUID flag for mount(2)); or

» the calling process is being ptraced.

The capabilities of the program file (see capabilities(7)) are also ignored if any of the above are true.

The effective user ID of the process is copied to the saved set-user-1D; similarly, the effective group ID
is copied to the saved set-group-1D. This copying takes place after any effective ID changes that occur
because of the set-user-1D and set-group-1D mode bits.

The process’s real UID and real GID, as well as its supplementary group IDs, are unchanged by a call
to execve().

If the executable is an a.out dynamically linked binary executable containing shared-library stubs, the
Linux dynamic linker Id.so(8) is called at the start of execution to bring needed shared objects into

Linux man-pages 6.7 2023-11-01 1

execve(2)

System Calls Manual execve(2)

memory and link the executable with them.

If the executable is a dynamically linked ELF executable, the interpreter named in the PT_INTERP
segment is used to load the needed shared objects. This interpreter is typically /lib/ld—linux.so.2 for bi-
naries linked with glibc (see Id-linux.so(8)).

Effect on process attributes
All process attributes are preserved during an execve(), except the following:

The dispositions of any signals that are being caught are reset to the default (signal(7)).
Any alternate signal stack is not preserved (sigaltstack(2)).

Memory mappings are not preserved (mmap(2)).

Attached System V shared memory segments are detached (shmat(2)).
POSIX shared memory regions are unmapped (shm_open(3)).

Open POSIX message queue descriptors are closed (mq_overview(7)).
Any open POSIX named semaphores are closed (sem_overview(7)).
POSIX timers are not preserved (timer_create(2)).

Any open directory streams are closed (opendir(3)).

Memory locks are not preserved (mlock(2), mlockall(2)).

Exit handlers are not preserved (atexit(3), on_exit(3)).

The floating-point environment is reset to the default (see fenv(3)).

The process attributes in the preceding list are all specified in POSIX.1. The following Linux-specific
process attributes are also not preserved during an execve():

The process’s "dumpable™ attribute is set to the value 1, unless a set-user-ID program, a set-group-
ID program, or a program with capabilities is being executed, in which case the dumpable flag may
instead be reset to the value in /proc/sys/fs/suid_dumpable, in the circumstances described under
PR_SET_DUMPABLE in prctl(2). Note that changes to the "dumpable™ attribute may cause own-
ership of files in the process’s /proc/ pid directory to change to root:root, as described in proc(5).

The prctl(2) PR_SET_KEEPCAPS flag is cleared.

(Since Linux 2.4.36 / 2.6.23) If a set-user-1D or set-group-1D program is being executed, then the
parent death signal set by prctl(2) PR_SET_PDEATHSIG flag is cleared.

The process name, as set by prctl(2) PR_SET_NAME (and displayed by ps —o comm), is reset to
the name of the new executable file.

The SECBIT_KEEP_CAPS securebits flag is cleared. See capabilities(7).
The termination signal is reset to SIGCHLD (see clone(2)).
The file descriptor table is unshared, undoing the effect of the CLONE_FILES flag of clone(2).

Note the following further points:

All threads other than the calling thread are destroyed during an execve(). Mutexes, condition vari-
ables, and other pthreads objects are not preserved.

The equivalent of setlocale(LC_ALL, "C") is executed at program start-up.

POSIX.1 specifies that the dispositions of any signals that are ignored or set to the default are left
unchanged. POSIX.1 specifies one exception: if SIGCHLD is being ignored, then an implementa-
tion may leave the disposition unchanged or reset it to the default; Linux does the former.

Any outstanding asynchronous 1/0 operations are canceled (aio_read(3), aio_write(3)).
For the handling of capabilities during execve(), see capabilities(7).

By default, file descriptors remain open across an execve(). File descriptors that are marked close-
on-exec are closed; see the description of FD_CLOEXEC in fcntl(2). (If a file descriptor is closed,
this will cause the release of all record locks obtained on the underlying file by this process. See fc-
ntl(2) for details.) POSIX.1 says that if file descriptors 0, 1, and 2 would otherwise be closed after
a successful execve(), and the process would gain privilege because the set-user-1D or set-group-1D

Linux man-pages 6.7 2023-11-01 2

execve(2) System Calls Manual execve(2)

mode bit was set on the executed file, then the system may open an unspecified file for each of these
file descriptors. As a general principle, no portable program, whether privileged or not, can assume
that these three file descriptors will remain closed across an execve().

Interpreter scripts
An interpreter script is a text file that has execute permission enabled and whose first line is of the
form:

#linterpreter [optional-arg]
The interpreter must be a valid pathname for an executable file.

If the pathname argument of execve() specifies an interpreter script, then interpreter will be invoked
with the following arguments:

interpreter [optional-arg] pathname arg...

where pathname is the pathname of the file specified as the first argument of execve(), and arg... is the
series of words pointed to by the argv argument of execve(), starting at argv[1]. Note that there is no
way to get the argv[0] that was passed to the execve() call.

For portable use, optional-arg should either be absent, or be specified as a single word (i.e., it should
not contain white space); see NOTES below.

Since Linux 2.6.28, the kernel permits the interpreter of a script to itself be a script. This permission is
recursive, up to a limit of four recursions, so that the interpreter may be a script which is interpreted by
a script, and so on.

Limits on size of arguments and environment
Most UNIX implementations impose some limit on the total size of the command-line argument (argv)
and environment (envp) strings that may be passed to a new program. POSIX.1 allows an implementa-
tion to advertise this limit using the ARG_MAX constant (either defined in <limits.h> or available at
run time using the call sysconf(_SC_ARG_MAX)).

Before Linux 2.6.23, the memory used to store the environment and argument strings was limited to 32
pages (defined by the kernel constant MAX_ARG_PAGES). On architectures with a 4-kB page size,
this yields a maximum size of 128 kB.

On Linux 2.6.23 and later, most architectures support a size limit derived from the soft
RLIMIT_STACK resource limit (see getrlimit(2)) that is in force at the time of the execve() call. (Ar-
chitectures with no memory management unit are excepted: they maintain the limit that was in effect
before Linux 2.6.23.) This change allows programs to have a much larger argument and/or environ-
ment list. For these architectures, the total size is limited to 1/4 of the allowed stack size. (Imposing
the 1/4-limit ensures that the new program always has some stack space.) Additionally, the total size is
limited to 3/4 of the value of the kernel constant _STK_LIM (8 MiB). Since Linux 2.6.25, the kernel
also places a floor of 32 pages on this size limit, so that, even when RLIMIT_STACK is set very low,
applications are guaranteed to have at least as much argument and environment space as was provided
by Linux 2.6.22 and earlier. (This guarantee was not provided in Linux 2.6.23 and 2.6.24.) Addition-
ally, the limit per string is 32 pages (the kernel constant MAX_ARG_STRLEN), and the maximum
number of strings is OX7FFFFFFF.

RETURN VALUE
On success, execve() does not return, on error =1 is returned, and errno is set to indicate the error.

ERRORS
E2BIG The total number of bytes in the environment (envp) and argument list (argv) is too large, an
argument or environment string is too long, or the full pathname of the executable is too long.
The terminating null byte is counted as part of the string length.

EACCES
Search permission is denied on a component of the path prefix of pathname or the name of a
script interpreter. (See also path_resolution(7).)

EACCES
The file or a script interpreter is not a regular file.

Linux man-pages 6.7 2023-11-01 3

execve(2) System Calls Manual execve(2)

EACCES
Execute permission is denied for the file or a script or ELF interpreter.

EACCES
The filesystem is mounted noexec.

EAGAIN (since Linux 3.1)
Having changed its real UID using one of the set*uid() calls, the caller was—and is now
still—above its RLIMIT_NPROC resource limit (see setrlimit(2)). For a more detailed ex-
planation of this error, see NOTES.

EFAULT
pathname or one of the pointers in the vectors argv or envp points outside your accessible ad-
dress space.

EINVAL
An ELF executable had more than one PT_INTERP segment (i.e., tried to name more than
one interpreter).

EIO An 1/O error occurred.

EISDIR
An ELF interpreter was a directory.

ELIBBAD
An ELF interpreter was not in a recognized format.

ELOOP
Too many symbolic links were encountered in resolving pathname or the name of a script or
ELF interpreter.

ELOOP
The maximum recursion limit was reached during recursive script interpretation (see "Inter-
preter scripts”, above). Before Linux 3.8, the error produced for this case was ENOEXEC.

EMFILE

The per-process limit on the number of open file descriptors has been reached.
ENAMETOOLONG

pathname is too long.
ENFILE

The system-wide limit on the total number of open files has been reached.
ENOENT

The file pathname or a script or ELF interpreter does not exist.
ENOEXEC

An executable is not in a recognized format, is for the wrong architecture, or has some other
format error that means it cannot be executed.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix of pathname or a script or ELF interpreter is not a directory.

EPERM
The filesystem is mounted nosuid, the user is not the superuser, and the file has the set-user-1D
or set-group-ID bit set.

EPERM
The process is being traced, the user is not the superuser and the file has the set-user-ID or set-
group-1D bit set.

EPERM
A "capability-dumb" applications would not obtain the full set of permitted capabilities
granted by the executable file. See capabilities(7).

Linux man-pages 6.7 2023-11-01 4

execve(2) System Calls Manual execve(2)

ETXTBSY
The specified executable was open for writing by one or more processes.

VERSIONS
POSIX does not document the #! behavior, but it exists (with some variations) on other UNIX systems.

On Linux, argv and envp can be specified as NULL. In both cases, this has the same effect as specify-
ing the argument as a pointer to a list containing a single null pointer. Do not take advantage of this
nonstandard and nonportable misfeature! On many other UNIX systems, specifying argv as NULL
will result in an error (EFAULT). Some other UNIX systems treat the envp==NULL case the same as
Linux.

POSIX.1 says that values returned by sysconf(3) should be invariant over the lifetime of a process.
However, since Linux 2.6.23, if the RLIMIT_STACK resource limit changes, then the value reported
by _SC_ARG_MAX will also change, to reflect the fact that the limit on space for holding command-
line arguments and environment variables has changed.

Interpreter scripts
The kernel imposes a maximum length on the text that follows the "#!" characters at the start of a
script; characters beyond the limit are ignored. Before Linux 5.1, the limit is 127 characters. Since
Linux 5.1, the limit is 255 characters.

The semantics of the optional-arg argument of an interpreter script vary across implementations. On
Linux, the entire string following the interpreter name is passed as a single argument to the interpreter,
and this string can include white space. However, behavior differs on some other systems. Some sys-
tems use the first white space to terminate optional-arg. On some systems, an interpreter script can
have multiple arguments, and white spaces in optional-arg are used to delimit the arguments.

Linux (like most other modern UNIX systems) ignores the set-user-1D and set-group-1D bits on scripts.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

With UNIX V6, the argument list of an exec() call was ended by 0, while the argument list of main was
ended by -1. Thus, this argument list was not directly usable in a further exec() call. Since UNIX V7,
both are NULL.

NOTES
One sometimes sees execve() (and the related functions described in exec(3)) described as "executing a
new process"” (or similar). This is a highly misleading description: there is no new process; many at-
tributes of the calling process remain unchanged (in particular, its PID). All that execve() does is
arrange for an existing process (the calling process) to execute a new program.

Set-user-1D and set-group-ID processes can not be ptrace(2)d.

The result of mounting a filesystem nosuid varies across Linux kernel versions: some will refuse exe-
cution of set-user-1D and set-group-1D executables when this would give the user powers they did not
have already (and return EPERM), some will just ignore the set-user-1D and set-group-ID bits and
exec() successfully.

In most cases where execve() fails, control returns to the original executable image, and the caller of
execve() can then handle the error. However, in (rare) cases (typically caused by resource exhaustion),
failure may occur past the point of no return: the original executable image has been torn down, but the
new image could not be completely built. In such cases, the kernel kills the process with a SIGSEGV
(SIGKILL until Linux 3.17) signal.

execve() and EAGAIN
A more detailed explanation of the EAGAIN error that can occur (since Linux 3.1) when calling ex-
ecve() is as follows.

The EAGAIN error can occur when a preceding call to setuid(2), setreuid(2), or setresuid(2) caused
the real user ID of the process to change, and that change caused the process to exceed its
RLIMIT_NPROC resource limit (i.e., the number of processes belonging to the new real UID exceeds
the resource limit). From Linux 2.6.0 to Linux 3.0, this caused the set*uid() call to fail. (Before Linux
2.6, the resource limit was not imposed on processes that changed their user 1Ds.)

Linux man-pages 6.7 2023-11-01 5

execve(2) System Calls Manual execve(2)

Since Linux 3.1, the scenario just described no longer causes the set*uid() call to fail, because it too of-
ten led to security holes where buggy applications didn’t check the return status and assumed that—if
the caller had root privileges—the call would always succeed. Instead, the set*uid() calls now success-
fully change the real UID, but the kernel sets an internal flag, named PF_NPROC_EXCEEDED, to
note that the RLIMIT_NPROC resource limit has been exceeded. If the PF_NPROC_EXCEEDED
flag is set and the resource limit is still exceeded at the time of a subsequent execve() call, that call fails
with the error EAGAIN. This kernel logic ensures that the RLIMIT_NPROC resource limit is still
enforced for the common privileged daemon workflow—namely, fork(2) + set*uid() + execve().

If the resource limit was not still exceeded at the time of the execve() call (because other processes be-
longing to this real UID terminated between the set*uid() call and the execve() call), then the execve()
call succeeds and the kernel clears the PF_NPROC_EXCEEDED process flag. The flag is also
cleared if a subsequent call to fork(2) by this process succeeds.

EXAMPLES
The following program is designed to be execed by the second program below. It just echoes its com-
mand-line arguments, one per line.

/* myecho.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
for (size_t j = 0; j < argc; j++)
printf("argv[%zu]: %s\n", j, argv[il);
exit(EXIT_SUCCESS);
}

This program can be used to exec the program named in its command-line argument:

/* execve.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
static char *newargv[] = { NULL, "hello™, "world™, NULL };
static char *newenviron[] = { NULL };
if (argc 1= 2) {
fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);
exit(EXIT_FAILURE);
}
newargv[0] = argv[1l];
execve(argv[1l], newargv, newenviron);
perror('execve'); /* execve() returns only on error */
exit(EXIT_FAILURE);
}

We can use the second program to exec the first as follows:

$ cc myecho.c -o myecho
$ cc execve.c -0 execve
$./execve ./myecho

Linux man-pages 6.7 2023-11-01 6

execve(2) System Calls Manual execve(2)

argv[0]: -/myecho
argv[1]: hello
argv[2]: world

We can also use these programs to demonstrate the use of a script interpreter. To do this we create a
script whose “interpreter” is our myecho program:

$ cat > script
#1_./myecho script-arg
~D
$ chmod +x script
We can then use our program to exec the script:

$./execve ./script
argv[0]: -/myecho
argv[1l]: script-arg
argv[2]: ./script
argv[3]: hello
argv[4]: world

SEE ALSO

chmod(2), execveat(2), fork(2), get robust_list(2), ptrace(2), exec(3), fexecve(3), getauxval(3)
getopt(3), system(3), capabilities(7), credentials(7), environ(7), path_resolution(7), Id.so(8)

Linux man-pages 6.7 2023-11-01 7

execveat(2) System Calls Manual execveat(2)

execveat — execute program relative to a directory file descriptor

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <linux/fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int execveat(int dirfd, const char * pathname,
char *const _Nullable argv(],
char *const _Nullable envp[],
int flags);

DESCRIPTION

The execveat() system call executes the program referred to by the combination of dirfd and path-
name. It operates in exactly the same way as execve(2), except for the differences described in this
manual page.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to
by the file descriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by execve(2) for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted rela-
tive to the current working directory of the calling process (like execve(2)).

If pathname is absolute, then dirfd is ignored.

If pathname is an empty string and the AT_EMPTY_PATH flag is specified, then the file descriptor
dirfd specifies the file to be executed (i.e., dirfd refers to an executable file, rather than a directory).

The flags argument is a bit mask that can include zero or more of the following flags:

AT_EMPTY_PATH
If pathname is an empty string, operate on the file referred to by dirfd (which may have been
obtained using the open(2) O_PATH flag).

AT_SYMLINK_NOFOLLOW
If the file identified by dirfd and a non-NULL pathname is a symbolic link, then the call fails
with the error ELOOP.

RETURN VALUE

On success, execveat() does not return. On error, =1 is returned, and errno is set to indicate the error.

ERRORS

The same errors that occur for execve(2) can also occur for execveat(). The following additional errors
can occur for execveat():

pathname
is relative but dirfd is neither AT_FDCWAD nor a valid file descriptor.

EINVAL
Invalid flag specified in flags.

ELOOP
flags includes AT_SYMLINK_NOFOLLOW and the file identified by dirfd and a non-
NULL pathname is a symbolic link.

ENOENT
The program identified by dirfd and pathname requires the use of an interpreter program
(such as a script starting with "#!"), but the file descriptor dirfd was opened with the
O_CLOEXEC flag, with the result that the program file is inaccessible to the launched inter-
preter. See BUGS.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a directory.

Linux man-pages 6.7 2023-10-31 1

execveat(2) System Calls Manual execveat(2)

STANDARDS

Linux.

HISTORY

Linux 3.19, glibc 2.34.

NOTES

BUGS

In addition to the reasons explained in openat(2), the execveat() system call is also needed to allow fex-
ecve(3) to be implemented on systems that do not have the /proc filesystem mounted.

When asked to execute a script file, the argv[0] that is passed to the script interpreter is a string of the
form /dev/fd/N or /dev/fd/N/P, where N is the number of the file descriptor passed via the dirfd argu-
ment. A string of the first form occurs when AT_EMPTY_PATH is employed. A string of the second
form occurs when the script is specified via both dirfd and pathname; in this case, P is the value given
in pathname.

For the same reasons described in fexecve(3), the natural idiom when using execveat() is to set the
close-on-exec flag on dirfd. (But see BUGS.)

The ENOENT error described above means that it is not possible to set the close-on-exec flag on the
file descriptor given to a call of the form:

execveat(fd, ', argv, envp, AT_EMPTY_PATH);

However, the inability to set the close-on-exec flag means that a file descriptor referring to the script
leaks through to the script itself. As well as wasting a file descriptor, this leakage can lead to file-de-
scriptor exhaustion in scenarios where scripts recursively employ execveat().

SEE ALSO

execve(2), openat(2), fexecve(3)

Linux man-pages 6.7 2023-10-31 2

_exit(2) System Calls Manual _exit(2)

NAME

_exit, _Exit — terminate the calling process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
[[noreturn]] void _exit(int status);
#include <stdlib.h>
[[noreturn]] void _Exit(int status);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

_Exit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >=200112L
DESCRIPTION
_exit() terminates the calling process "immediately”. Any open file descriptors belonging to the
process are closed. Any children of the process are inherited by init(1) (or by the nearest "subreaper"
process as defined through the use of the prctl(2) PR_SET_CHILD_SUBREAPER operation). The
process’s parent is sent a SIGCHLD signal.

The value status & OxFF is returned to the parent process as the process’s exit status, and can be col-
lected by the parent using one of the wait(2) family of calls.

The function _Exit() is equivalent to _exit().

RETURN VALUE
These functions do not return.

STANDARDS
_exit() POSIX.1-2008.

_Exit() C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

_Exit() was introduced by C99.

NOTES
For a discussion on the effects of an exit, the transmission of exit status, zombie processes, signals sent,
and so on, see exit(3).

The function _exit() is like exit(3), but does not call any functions registered with atexit(3) or
on_exit(3). Open stdio(3) streams are not flushed. On the other hand, _exit() does close open file de-
scriptors, and this may cause an unknown delay, waiting for pending output to finish. If the delay is un-
desired, it may be useful to call functions like tcflush(3) before calling _exit(). Whether any pending
I/0 is canceled, and which pending I/O may be canceled upon _exit(), is implementation-dependent.

C library/kernel differences
The text above in DESCRIPTION describes the traditional effect of _exit(), which is to terminate a
process, and these are the semantics specified by POSIX.1 and implemented by the C library wrapper
function. On modern systems, this means termination of all threads in the process.

By contrast with the C library wrapper function, the raw Linux _exit() system call terminates only the
calling thread, and actions such as reparenting child processes or sending SIGCHLD to the parent
process are performed only if this is the last thread in the thread group.

Up to glibc 2.3, the _exit() wrapper function invoked the kernel system call of the same name. Since
glibc 2.3, the wrapper function invokes exit_group(2), in order to terminate all of the threads in a
process.

SEE ALSO
execve(2), exit_group(2), fork(2), kill(2), wait(2), wait4(2), waitpid(2), atexit(3), exit(3), on_exit(3),
termios(3)

Linux man-pages 6.7 2023-10-31 1

exit_group(2) System Calls Manual exit_group(2)

NAME

exit_group — exit all threads in a process
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[noreturn]] void syscall(SYS_exit_group, int status);
Note: glibc provides no wrapper for exit_group(), necessitating the use of syscall(2).

DESCRIPTION
This system call terminates all threads in the calling process’s thread group.

RETURN VALUE
This system call does not return.

STANDARDS
Linux.

HISTORY
Linux 2.5.35.

NOTES
Since glibc 2.3, this is the system call invoked when the _exit(2) wrapper function is called.

SEE ALSO
_exit(2)

Linux man-pages 6.7 2023-10-31

fallocate(2) System Calls Manual fallocate(2)

NAME
fallocate — manipulate file space

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#define _ GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

int fallocate(int fd, int mode, off_t offset, off _t len);

DESCRIPTION
This is a nonportable, Linux-specific system call. For the portable, POSIX.1-specified method of en-
suring that space is allocated for a file, see posix_fallocate(3).

fallocate() allows the caller to directly manipulate the allocated disk space for the file referred to by fd
for the byte range starting at offset and continuing for len bytes.

The mode argument determines the operation to be performed on the given range. Details of the sup-
ported operations are given in the subsections below.

Allocating disk space
The default operation (i.e., mode is zero) of fallocate() allocates the disk space within the range speci-
fied by offset and len. The file size (as reported by stat(2)) will be changed if offset+len is greater than
the file size. Any subregion within the range specified by offset and len that did not contain data before
the call will be initialized to zero. This default behavior closely resembles the behavior of the
posix_fallocate(3) library function, and is intended as a method of optimally implementing that func-
tion.

After a successful call, subsequent writes into the range specified by offset and len are guaranteed not
to fail because of lack of disk space.

If the FALLOC_FL_KEEP_SIZE flag is specified in mode, the behavior of the call is similar, but the
file size will not be changed even if offset+len is greater than the file size. Preallocating zeroed blocks
beyond the end of the file in this manner is useful for optimizing append workloads.

If the FALLOC _FL_UNSHARE_RANGE flag is specified in mode, shared file data extents will be
made private to the file to guarantee that a subsequent write will not fail due to lack of space. Typi-
cally, this will be done by performing a copy-on-write operation on all shared data in the file. This flag
may not be supported by all filesystems.

Because allocation is done in block size chunks, fallocate() may allocate a larger range of disk space
than was specified.

Deallocating file space
Specifying the FALLOC_FL_PUNCH_HOLE flag (available since Linux 2.6.38) in mode deallocates
space (i.e., creates a hole) in the byte range starting at offset and continuing for len bytes. Within the
specified range, partial filesystem blocks are zeroed, and whole filesystem blocks are removed from the
file. After a successful call, subsequent reads from this range will return zeros.

The FALLOC_FL_PUNCH_HOLE flag must be ORed with FALLOC_FL_KEEP_SIZE in mode;
in other words, even when punching off the end of the file, the file size (as reported by stat(2)) does not
change.

Not all filesystems support FALLOC _FL_PUNCH_HOLE; if a filesystem doesn’t support the opera-
tion, an error is returned. The operation is supported on at least the following filesystems:

» XFS (since Linux 2.6.38)
e ext4 (since Linux 3.0)
» Birfs (since Linux 3.7)
« tmpfs(5) (since Linux 3.5)
« gfs2(5) (since Linux 4.16)

Collapsing file space
Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux 3.15) in mode re-
moves a byte range from a file, without leaving a hole. The byte range to be collapsed starts at offset

Linux man-pages 6.7 2023-10-31 1

fallocate(2) System Calls Manual fallocate(2)

and continues for len bytes. At the completion of the operation, the contents of the file starting at the
location offset+len will be appended at the location offset, and the file will be len bytes smaller.

A filesystem may place limitations on the granularity of the operation, in order to ensure efficient im-
plementation. Typically, offset and len must be a multiple of the filesystem logical block size, which
varies according to the filesystem type and configuration. If a filesystem has such a requirement, fallo-
cate() fails with the error EINVAL if this requirement is violated.

If the region specified by offset plus len reaches or passes the end of file, an error is returned; instead,
use ftruncate(2) to truncate a file.

No other flags may be specified in mode in conjunction with FALLOC_FL_COLLAPSE_RANGE.

As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only for extent-based
files) and XFS.

Zeroing file space
Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15) in mode zeros space
in the byte range starting at offset and continuing for len bytes. Within the specified range, blocks are
preallocated for the regions that span the holes in the file. After a successful call, subsequent reads
from this range will return zeros.

Zeroing is done within the filesystem preferably by converting the range into unwritten extents. This
approach means that the specified range will not be physically zeroed out on the device (except for par-
tial blocks at the either end of the range), and 1/O is (otherwise) required only to update metadata.

If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the behavior of the call is
similar, but the file size will not be changed even if offset+len is greater than the file size. This behav-
ior is the same as when preallocating space with FALLOC_FL_KEEP_SIZE specified.

Not all filesystems support FALLOC _FL_ZERO_RANGE; if a filesystem doesn’t support the opera-
tion, an error is returned. The operation is supported on at least the following filesystems:

* XFS (since Linux 3.15)

» ext4, for extent-based files (since Linux 3.15)
e SMB3 (since Linux 3.17)

» Birfs (since Linux 4.16)

Increasing file space
Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1) in mode increases
the file space by inserting a hole within the file size without overwriting any existing data. The hole
will start at offset and continue for len bytes. When inserting the hole inside file, the contents of the
file starting at offset will be shifted upward (i.e., to a higher file offset) by len bytes. Inserting a hole
inside a file increases the file size by len bytes.

This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regarding the granularity
of the operation. If the granularity requirements are not met, fallocate() fails with the error EINVAL.
If the offset is equal to or greater than the end of file, an error is returned. For such operations (i.e., in-
serting a hole at the end of file), ftruncate(2) should be used.

No other flags may be specified in mode in conjunction with FALLOC_FL_INSERT_RANGE.

FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that support this operation
include XFS (since Linux 4.1) and ext4 (since Linux 4.2).

RETURN VALUE
On success, fallocate() returns zero. On error, —1 is returned and errno is set to indicate the error.

ERRORS
EBADF
fd is not a valid file descriptor, or is not opened for writing.
EFBIG
offset+len exceeds the maximum file size.
EFBIG

mode is FALLOC_FL_INSERT_RANGE, and the current file size+len exceeds the maxi-
mum file size.

Linux man-pages 6.7 2023-10-31 2

fallocate(2) System Calls Manual fallocate(2)

EINTR
A signal was caught during execution; see signal(7).

EINVAL
offset was less than 0, or len was less than or equal to 0.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE and the range specified by offset plus len
reaches or passes the end of the file.

EINVAL
mode is FALLOC_FL_INSERT_RANGE and the range specified by offset reaches or passes
the end of the file.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE, but ei-
ther offset or len is not a multiple of the filesystem block size.

EINVAL
mode contains one of FALLOC FL _COLLAPSE RANGE or FALLOC FL_IN-
SERT_RANGE and also other flags; no other flags are permitted with FALLOC_FL_COL-
LAPSE_RANGE or FALLOC_FL_INSERT_RANGE.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE, FALLOC_FL_ZERO_RANGE, or FAL-
LOC_FL_INSERT_RANGE, but the file referred to by fd is not a regular file.

EIO An 1/O error occurred while reading from or writing to a filesystem.

ENODEV
fd does not refer to a regular file or a directory. (If fd is a pipe or FIFO, a different error re-
sults.)

ENOSPC
There is not enough space left on the device containing the file referred to by fd.

ENOSYS
This kernel does not implement fallocate().

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this operation; or the
mode is not supported by the filesystem containing the file referred to by fd.

EPERM
The file referred to by fd is marked immutable (see chattr(1)).

EPERM
mode specifies FALLOC_FL_PUNCH_HOLE, FALLOC_FL_COLLAPSE_RANGE, or
FALLOC_ FL_INSERT_RANGE and the file referred to by fd is marked append-only (see
chattr(1)).

EPERM
The operation was prevented by a file seal; see fcntl(2).

ESPIPE
fd refers to a pipe or FIFO.

ETXTBSY
mode specifies FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_INSERT_RANGE,
but the file referred to by fd is currently being executed.

STANDARDS
Linux.

HISTORY
fallocate()
Linux 2.6.23, glibc 2.10.

Linux man-pages 6.7 2023-10-31 3

fallocate(2) System Calls Manual fallocate(2)

FALLOC_FL_*
glibc 2.18.

SEE ALSO
fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

Linux man-pages 6.7 2023-10-31 4

fanotify_init(2) System Calls Manual fanotify_init(2)

NAME

fanotify_init — create and initialize fanotify group
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <fcntl.h> /* Definition of O_* constants */

#include <sys/fanotify.h>
int fanotify_init(unsigned int flags, unsigned int event_f _flags);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_init() initializes a new fanotify group and returns a file descriptor for the event queue associ-
ated with the group.

The file descriptor is used in calls to fanotify_mark(2) to specify the files, directories, mounts, or
filesystems for which fanotify events shall be created. These events are received by reading from the
file descriptor. Some events are only informative, indicating that a file has been accessed. Other events
can be used to determine whether another application is permitted to access a file or directory. Permis-
sion to access filesystem objects is granted by writing to the file descriptor.

Multiple programs may be using the fanotify interface at the same time to monitor the same files.
The number of fanotify groups per user is limited. See fanotify(7) for details about this limit.

The flags argument contains a multi-bit field defining the notification class of the listening application
and further single bit fields specifying the behavior of the file descriptor.

If multiple listeners for permission events exist, the notification class is used to establish the sequence
in which the listeners receive the events.

Only one of the following notification classes may be specified in flags:

FAN_CLASS_PRE_CONTENT
This value allows the receipt of events notifying that a file has been accessed and events for
permission decisions if a file may be accessed. It is intended for event listeners that need to
access files before they contain their final data. This notification class might be used by hier-
archical storage managers, for example. Use of this flag requires the CAP_SYS_ADMIN ca-
pability.

FAN_CLASS_CONTENT
This value allows the receipt of events notifying that a file has been accessed and events for
permission decisions if a file may be accessed. It is intended for event listeners that need to
access files when they already contain their final content. This notification class might be used
by malware detection programs, for example. Use of this flag requires the CAP_SYS_AD-
MIN capability.

FAN_CLASS_NOTIF
This is the default value. It does not need to be specified. This value only allows the receipt
of events notifying that a file has been accessed. Permission decisions before the file is ac-
cessed are not possible.

Listeners with different notification classes will receive events in the order FAN_CLASS PRE_CON-
TENT, FAN_CLASS CONTENT, FAN_CLASS_NOTIF. The order of notification for listeners in
the same natification class is undefined.

The following bits can additionally be set in flags:

FAN_CLOEXEC
Set the close-on-exec flag (FD_CLOEXEC) on the new file descriptor. See the description of
the O_CLOEXEC flag in open(2).

FAN_NONBLOCK
Enable the nonblocking flag (O_NONBLOCK) for the file descriptor. Reading from the file
descriptor will not block. Instead, if no data is available, read(2) fails with the error EA-
GAIN.

Linux man-pages 6.7 2023-10-31 1

fanotify_init(2) System Calls Manual fanotify_init(2)

FAN_UNLIMITED_QUEUE
Remove the limit on the number of events in the event queue. See fanotify(7) for details about
this limit. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_UNLIMITED_MARKS
Remove the limit on the number of fanotify marks per user. See fanotify(7) for details about
this limit. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_REPORT _TID (since Linux 4.20)
Report thread ID (TID) instead of process ID (PID) in the pid field of the struct fan-
otify_event_metadata supplied to read(2) (see fanotify(7)). Use of this flag requires the
CAP_SYS_ADMIN capability.

FAN_ENABLE_AUDIT (since Linux 4.15)
Enable generation of audit log records about access mediation performed by permission
events. The permission event response has to be marked with the FAN_AUDIT flag for an au-
dit log record to be generated. Use of this flag requires the CAP_AUDIT_WRITE capability.

FAN_REPORT_FID (since Linux 5.1)

This value allows the receipt of events which contain additional information about the under-
lying filesystem object correlated to an event. An additional record of type
FAN_EVENT_INFO_TYPE_FID encapsulates the information about the object and is in-
cluded alongside the generic event metadata structure. The file descriptor that is used to repre-
sent the object correlated to an event is instead substituted with a file handle. It is intended for
applications that may find the use of a file handle to identify an object more suitable than a file
descriptor. Additionally, it may be used for applications monitoring a directory or a filesystem
that are interested in the directory entry modification events FAN_CREATE, FAN_DELETE,
FAN_MOVE, and FAN_RENAME, or in events such as FAN_ATTRIB,
FAN_DELETE_SELF, and FAN_MOVE_SELF. All the events above require an fanotify
group that identifies filesystem objects by file handles. Note that without the flag FAN_RE-
PORT_TARGET_FID, for the directory entry modification events, there is an information
record that identifies the modified directory and not the created/deleted/moved child object.
The use of FAN_CLASS_CONTENT or FAN_CLASS_PRE_CONTENT is not permitted
with this flag and will result in the error EINVAL. See fanotify(7) for additional details.

FAN_REPORT_DIR_FID (since Linux 5.9)

Events for fanotify groups initialized with this flag will contain (see exceptions below) addi-
tional information about a directory object correlated to an event. An additional record of type
FAN_EVENT_INFO_TYPE_DFID encapsulates the information about the directory object
and is included alongside the generic event metadata structure. For events that occur on a non-
directory object, the additional structure includes a file handle that identifies the parent direc-
tory filesystem object. Note that there is no guarantee that the directory filesystem object will
be found at the location described by the file handle information at the time the event is re-
ceived. When combined with the flag FAN_REPORT_FID, two records may be reported
with events that occur on a non-directory object, one to identify the non-directory object itself
and one to identify the parent directory object. Note that in some cases, a filesystem object
does not have a parent, for example, when an event occurs on an unlinked but open file. In
that case, with the FAN_REPORT _FID flag, the event will be reported with only one record
to identify the non-directory object itself, because there is no directory associated with the
event. Without the FAN_REPORT _FID flag, no event will be reported. See fanotify(7) for
additional details.

FAN_REPORT_NAME (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain additional information about
the name of the directory entry correlated to an event. This flag must be provided in conjunc-
tion with the flag FAN_REPORT_DIR_FID. Providing this flag value without FAN_RE-
PORT_DIR_FID will result in the error EINVAL. This flag may be combined with the flag
FAN_REPORT_FID. An additional record of type
FAN_EVENT_INFO_TYPE_DFID_NAME, which encapsulates the information about the
directory entry, is included alongside the generic event metadata structure and substitutes the
additional information record of type FAN_EVENT_INFO_TYPE_DFID. The additional
record includes a file handle that identifies a directory filesystem object followed by a name

Linux man-pages 6.7 2023-10-31 2

fanotify_init(2) System Calls Manual fanotify_init(2)

that identifies an entry in that directory. For the directory entry modification events
FAN_CREATE, FAN_DELETE, and FAN_MOVE, the reported name is that of the cre-
ated/deleted/moved directory entry. The event FAN_RENAME may contain two information
records. One of type FAN_EVENT_INFO_TYPE_OLD_DFID_NAME identifying the old
directory entry, and another of type FAN_EVENT_INFO_TYPE_NEW_DFID_NAME
identifying the new directory entry. For other events that occur on a directory object, the re-
ported file handle is that of the directory object itself and the reported name is ’.’. For other
events that occur on a non-directory object, the reported file handle is that of the parent direc-
tory object and the reported name is the name of a directory entry where the object was lo-
cated at the time of the event. The rationale behind this logic is that the reported directory file
handle can be passed to open_by handle_at(2) to get an open directory file descriptor and that
file descriptor along with the reported name can be used to call fstatat(2). The same rule that
applies to record type FAN_EVENT_INFO _TYPE_DFID also applies to record type
FAN_EVENT_INFO_TYPE_DFID_NAME: if a non-directory object has no parent, either
the event will not be reported or it will be reported without the directory entry information.
Note that there is no guarantee that the filesystem object will be found at the location de-
scribed by the directory entry information at the time the event is received. See fanotify(7) for
additional details.

FAN_REPORT_DFID_NAME
This is a synonym for (FAN_REPORT_DIR_FID|FAN_REPORT_NAME).

FAN_REPORT_TARGET_FID (since Linux 5.17)
Events for fanotify groups initialized with this flag will contain additional information about
the child correlated with directory entry modification events. This flag must be provided in
conjunction with the flags FAN_REPORT_FID, FAN_REPORT_DIR_FID and FAN_RE-
PORT_NAME. or else the error EINVAL will be returned. For the directory entry modifica-
tion events FAN_CREATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, an addi-
tional record of type FAN_EVENT _INFO_TYPE_FID, is reported in addition to the infor-

mation records of type FAN_EVENT_INFO_TYPE_DFID,
FAN_EVENT_INFO_TYPE_DFID_NAME,
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME, and

FAN_EVENT_INFO_TYPE_NEW_DFID _NAME. The additional record includes a file
handle that identifies the filesystem child object that the directory entry is referring to.

FAN_REPORT_DFID_NAME_TARGET
This is a synonym for (FAN_REPORT DFID_NAME|FAN_REPORT_FID|FAN_RE-
PORT_TARGET _FID).

FAN_REPORT_PIDFD (since Linux 5.15)

Events for fanotify groups initialized with this flag will contain an additional information
record alongside the generic fanotify_event_metadata structure. This information record will
be of type FAN_EVENT _INFO_TYPE_PIDFD and will contain a pidfd for the process that
was responsible for generating an event. A pidfd returned in this information record object is
no different to the pidfd that is returned when calling pidfd_open(2). Usage of this informa-
tion record are for applications that may be interested in reliably determining whether the
process responsible for generating an event has been recycled or terminated. The use of the
FAN_REPORT _TID flag along with FAN_REPORT_PIDFD is currently not supported and
attempting to do so will result in the error EINVAL being returned. This limitation is cur-
rently imposed by the pidfd API as it currently only supports the creation of pidfds for thread-
group leaders. Creating pidfds for non-thread-group leaders may be supported at some point
in the future, so this restriction may eventually be lifted. For more details on information
records, see fanotify(7).

The event_f flags argument defines the file status flags that will be set on the open file descriptions that
are created for fanotify events. For details of these flags, see the description of the flags values in
open(2). event_f flags includes a multi-bit field for the access mode. This field can take the following
values:

O_RDONLY
This value allows only read access.

Linux man-pages 6.7 2023-10-31 3

fanotify_init(2) System Calls Manual fanotify_init(2)

O_WRONLY
This value allows only write access.

O_RDWR
This value allows read and write access.

Additional bits can be set in event_f flags. The most useful values are:

O_LARGEFILE
Enable support for files exceeding 2 GB. Failing to set this flag will result in an EOVER-
FLOW error when trying to open a large file which is monitored by an fanotify group on a
32-bit system.

O_CLOEXEC (since Linux 3.18)
Enable the close-on-exec flag for the file descriptor. See the description of the O_CLOEXEC
flag in open(2) for reasons why this may be useful.

The following are also allowable: O_APPEND, O_DSYNC, O_NOATIME, O_NONBLOCK, and
O_SYNC. Specifying any other flag in event_f flags yields the error EINVAL (but see BUGS).

RETURN VALUE
On success, fanotify _init() returns a new file descriptor. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS

EINVAL
An invalid value was passed in flags or event_f flags. FAN_ALL_INIT_FLAGS (deprecated
since Linux 4.20) defines all allowable bits for flags.

EMFILE
The number of fanotify groups for this user exceeds the limit. See fanotify(7) for details about
this limit.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENOMEM
The allocation of memory for the notification group failed.

ENOSYS

This kernel does not implement fanotify_init(). The fanotify API is available only if the ker-
nel was configured with CONFIG_FANOTIFY.

EPERM
The operation is not permitted because the caller lacks a required capability.

VERSIONS
Prior to Linux 5.13, calling fanotify_init() required the CAP_SYS_ADMIN capability. Since Linux
5.13, users may call fanotify_init() without the CAP_SYS_ADMIN capability to create and initialize
an fanotify group with limited functionality.

The limitations imposed on an event listener created by a user without the
CAP_SYS_ADMIN capability are as follows:

e The user cannot request for an unlimited event queue by using FAN_UNLIM-
ITED_QUEUE.

e The user cannot request for an unlimited number of marks by using FAN_UNLIM-
ITED_MARKS.

« The user cannot request to use either notification classes FAN_CLASS_CONTENT or
FAN_CLASS PRE_CONTENT. This means that user cannot request permission events.

« The user is required to create a group that identifies filesystem objects by file handles, for
example, by providing the FAN_REPORT _FID flag.

e The user is limited to only mark inodes. The ability to mark a mount or filesystem via
fanotify_mark() through the use of FAN_MARK_MOUNT or
FAN_MARK_FILESYSTEM is not permitted.

Linux man-pages 6.7 2023-10-31 4

fanotify_init(2) System Calls Manual fanotify_init(2)

* The event object in the event queue is limited in terms of the information that is made
available to the unprivileged user. A user will also not receive the pid that generated the
event, unless the listening process itself generated the event.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

BUGS
The following bug was present before Linux 3.18:

* The O_CLOEXEC is ignored when passed in event_f flags.
The following bug was present before Linux 3.14:

« The event f flags argument is not checked for invalid flags. Flags that are intended only for inter-
nal use, such as FMODE_EXEC, can be set, and will consequently be set for the file descriptors
returned when reading from the fanotify file descriptor.

SEE ALSO
fanotify_mark(2), fanotify(7)

Linux man-pages 6.7 2023-10-31 5

fanotify_mark(2) System Calls Manual fanotify_mark(2)

fanotify_mark — add, remove, or modify an fanotify mark on a filesystem object

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/fanotify.h>

int fanotify_mark(int fanotify_fd, unsigned int flags,
uinté4_t mask, int dirfd,
const char *_Nullable pathname);

DESCRIPTION

For an overview of the fanotify API, see fanotify(7).

fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object. The caller must
have read permission on the filesystem object that is to be marked.

The fanotify_fd argument is a file descriptor returned by fanotify_init(2).

flags is a bit mask describing the modification to perform. It must include exactly one of the following
values:

FAN_MARK_ADD
The events in mask will be added to the mark mask (or to the ignore mask). mask must be
nonempty or the error EINVAL will occur.

FAN_MARK_REMOVE
The events in argument mask will be removed from the mark mask (or from the ignore mask).
mask must be nonempty or the error EINVAL will occur.

FAN_MARK_FLUSH

Remove either all marks for filesystems, all marks for mounts, or all marks for directories and
files from the fanotify group. If flags contains FAN_MARK_MOUNT, all marks for mounts
are removed from the group. If flags contains FAN_MARK_FILESYSTEM, all marks for
filesystems are removed from the group. Otherwise, all marks for directories and files are re-
moved. No flag other than, and at most one of, the flags FAN_MARK_MOUNT or
FAN_MARK_FILESYSTEM can be used in conjunction with FAN_MARK_FLUSH.
mask is ignored.

If none of the values above is specified, or more than one is specified, the call fails with the error EIN-
VAL.

In addition, zero or more of the following values may be ORed into flags:

FAN_MARK_DONT_FOLLOW
If pathname is a symbolic link, mark the link itself, rather than the file to which it refers. (By
default, fanotify _mark() dereferences pathname if it is a symbolic link.)

FAN_MARK_ONLYDIR
If the filesystem object to be marked is not a directory, the error ENOTDIR shall be raised.

FAN_MARK_MOUNT

Mark the mount specified by pathname. If pathname is not itself a mount point, the mount
containing pathname will be marked. All directories, subdirectories, and the contained files
of the mount will be monitored. The events which require that filesystem objects are identi-
fied by file handles, such as FAN_CREATE, FAN_ATTRIB, FAN_MOVE, and
FAN_DELETE_SELF, cannot be provided as a mask when flags contains
FAN_MARK_MOUNT. Attempting to do so will result in the error EINVAL being re-
turned. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_MARK_FILESYSTEM (since Linux 4.20)
Mark the filesystem specified by pathname. The filesystem containing pathname will be
marked. All the contained files and directories of the filesystem from any mount point will be
monitored. Use of this flag requires the CAP_SYS_ADMIN capability.

Linux man-pages 6.7 2023-10-31 1

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_MARK_IGNORED_MASK

The events in mask shall be added to or removed from the ignore mask. Note that the flags
FAN_ONDIR, and FAN_EVENT_ON_CHILD have no effect when provided with this flag.
The effect of setting the flags FAN_ONDIR, and FAN_EVENT_ON_CHILD in the mark
mask on the events that are set in the ignore mask is undefined and depends on the Linux ker-
nel version. Specifically, prior to Linux 5.9, setting a mark mask on a file and a mark with ig-
nore mask on its parent directory would not result in ignoring events on the file, regardless of
the FAN_EVENT_ON_CHILD flag in the parent directory’s mark mask. When the ignore
mask is updated with the FAN_MARK_IGNORED_MASK flag on a mark that was previ-
ously updated with the FAN_MARK _IGNORE flag, the update fails with EEXIST error.

FAN_MARK_IGNORE (since Linux 6.0)

This flag has a similar effect as setting the FAN_MARK_IGNORED_MASK flag. The
events in mask shall be added to or removed from the ignore mask. Unlike the
FAN_MARK_IGNORED_MASK flag, this flag also has the effect that the FAN_ONDIR,
and FAN_EVENT_ON_CHILD flags take effect on the ignore mask. Specifically, unless the
FAN_ONDIR flag is set with FAN_MARK_IGNORE, events on directories will not be ig-
nored. If the flag FAN_EVENT_ON_CHILD is set with FAN_MARK_IGNORE, events on
children will be ignored. For example, a mark on a directory with combination of a mask with
FAN_CREATE event and FAN_ONDIR flag and an ignore mask with FAN_CREATE event
and without FAN_ONDIR flag, will result in getting only the events for creation of sub-direc-
tories. When using the FAN_MARK_IGNORE flag to add to an ignore mask of a mount,
filesystem, or directory inode mark, the FAN_MARK_IGNORED_SURV_MODIFY flag
must be specified. Failure to do so will results with EINVVAL or EISDIR error.

FAN_MARK_IGNORED_SURV_MODIFY

The ignore mask shall survive modify events. If this flag is not set, the ignore mask is cleared
when a modify event occurs on the marked object. Omitting this flag is typically used to sup-
press events (e.g., FAN_OPEN) for a specific file, until that specific file’s content has been
modified. It is far less useful to suppress events on an entire filesystem, or mount, or on all
files inside a directory, until some file’s content has been modified. For this reason, the
FAN_MARK_IGNORE flag requires the FAN_MARK_IGNORED_SURV_MODIFY flag
on a mount, filesystem, or directory inode mark. This flag cannot be removed from a mark
once set. When the ignore mask is updated without this flag on a mark that was previously
updated with the FAN_MARK_IGNORE and FAN_MARK_IGNORED_SURV_MODIFY
flags, the update fails with EEXIST error.

FAN_MARK_IGNORE_SURV
This is a synonym for (FAN_MARK_IGNORE|FAN_MARK_IGNORED_SURV_MOD-
IFY).

FAN_MARK_EVICTABLE (since Linux 5.19)

When an inode mark is created with this flag, the inode object will not be pinned to the inode
cache, therefore, allowing the inode object to be evicted from the inode cache when the mem-
ory pressure on the system is high. The eviction of the inode object results in the evictable
mark also being lost. When the mask of an evictable inode mark is updated without using the
FAN_MARK_EVICATBLE flag, the marked inode is pinned to inode cache and the mark is
no longer evictable. When the mask of a non-evictable inode mark is updated with the
FAN_MARK_EVICTABLE flag, the inode mark remains non-evictable and the update fails
with EEXIST error. Mounts and filesystems are not evictable objects, therefore, an attempt to
create a mount mark or a filesystem mark with the FAN_MARK_EVICTABLE flag, will re-
sult in the error EINVAL. For example, inode marks can be used in combination with mount
marks to reduce the amount of events from noninteresting paths. The event listener reads
events, checks if the path reported in the event is of interest, and if it is not, the listener sets a
mark with an ignore mask on the directory. Evictable inode marks allow using this method for
a large number of directories without the concern of pinning all inodes and exhausting the sys-
tem’s memory.

mask defines which events shall be listened for (or which shall be ignored). It is a bit mask composed
of the following values:

Linux man-pages 6.7 2023-10-31 2

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_ACCESS
Create an event when a file or directory (but see BUGS) is accessed (read).

FAN_MODIFY
Create an event when a file is modified (write).

FAN_CLOSE_WRITE
Create an event when a writable file is closed.

FAN_CLOSE_NOWRITE
Create an event when a read-only file or directory is closed.

FAN_OPEN
Create an event when a file or directory is opened.

FAN_OPEN_EXEC (since Linux 5.0)
Create an event when a file is opened with the intent to be executed. See NOTES for addi-
tional details.

FAN_ATTRIB (since Linux 5.1)
Create an event when the metadata for a file or directory has changed. An fanotify group that
identifies filesystem objects by file handles is required.

FAN_CREATE (since Linux 5.1)
Create an event when a file or directory has been created in a marked parent directory. An
fanotify group that identifies filesystem objects by file handles is required.

FAN_DELETE (since Linux 5.1)
Create an event when a file or directory has been deleted in a marked parent directory. An
fanotify group that identifies filesystem objects by file handles is required.

FAN_DELETE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself is deleted. An fanotify group that identi-
fies filesystem objects by file handles is required.

FAN_FS_ERROR (since Linux 5.16)
Create an event when a filesystem error leading to inconsistent filesystem metadata is de-
tected. An additional information record of type FAN_EVENT_INFO_TYPE_ERROR is
returned for each event in the read buffer. An fanotify group that identifies filesystem objects
by file handles is required.

Events of such type are dependent on support from the underlying filesystem. At the time of
writing, only the ext4 filesystem reports FAN_FS_ERROR events.

See fanotify(7) for additional details.

FAN_MOVED_FROM (since Linux 5.1)
Create an event when a file or directory has been moved from a marked parent directory. An
fanotify group that identifies filesystem objects by file handles is required.

FAN_MOVED_TO (since Linux 5.1)
Create an event when a file or directory has been moved to a marked parent directory. An fan-
otify group that identifies filesystem objects by file handles is required.

FAN_RENAME (since Linux 5.17)
This event contains the same information provided by events FAN_MOVED_FROM and
FAN_MOVED_TO, however is represented by a single event with up to two information
records. An fanotify group that identifies filesystem objects by file handles is required. If the
filesystem object to be marked is not a directory, the error ENOTDIR shall be raised.

FAN_MOVE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself has been moved. An fanotify group that
identifies filesystem objects by file handles is required.

FAN_OPEN_PERM
Create an event when a permission to open a file or directory is requested. An fanotify file de-
scriptor created with FAN_CLASS PRE_CONTENT or FAN_CLASS_CONTENT is re-
quired.

Linux man-pages 6.7 2023-10-31 3

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_OPEN_EXEC_PERM (since Linux 5.0)
Create an event when a permission to open a file for execution is requested. An fanotify file
descriptor created with FAN_CLASS PRE_CONTENT or FAN_CLASS CONTENT is re-
quired. See NOTES for additional details.

FAN_ACCESS_PERM
Create an event when a permission to read a file or directory is requested. An fanotify file de-
scriptor created with FAN_CLASS PRE_CONTENT or FAN_CLASS_CONTENT is re-
quired.

FAN_ONDIR
Create events for directories—for example, when opendir(3), readdir(3) (but see BUGS), and
closedir(3) are called. Without this flag, events are created only for files. In the context of di-
rectory entry events, such as FAN_CREATE, FAN_DELETE, FAN_MOVED_FROM, and
FAN_MOVED _TO, specifying the flag FAN_ONDIR is required in order to create events
when subdirectory entries are modified (i.e., mkdir(2)/ rmdir(2)).

FAN_EVENT_ON_CHILD

Events for the immediate children of marked directories shall be created. The flag has no ef-
fect when marking mounts and filesystems. Note that events are not generated for children of
the subdirectories of marked directories. More specifically, the directory entry modification
events FAN_CREATE, FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO
are not generated for any entry modifications performed inside subdirectories of marked direc-
tories. Note that the events FAN_DELETE_SELF and FAN_MOVE_SELF are not gener-
ated for children of marked directories. To monitor complete directory trees it is necessary to
mark the relevant mount or filesystem.

The following composed values are defined:

FAN_CLOSE
A file is closed (FAN_CLOSE_WRITE|FAN_CLOSE_NOWRITE).

FAN_MOVE
A file or directory has been moved (FAN_MOVED_FROM|FAN_MOVED_TO).

The filesystem object to be marked is determined by the file descriptor dirfd and the pathname speci-
fied in pathname:

» If pathname is NULL, dirfd defines the filesystem object to be marked.

e If pathname is NULL, and dirfd takes the special value AT_FDCWD, the current working direc-
tory is to be marked.

« If pathname is absolute, it defines the filesystem object to be marked, and dirfd is ignored.

« If pathname is relative, and dirfd does not have the value AT_FDCWD, then the filesystem object
to be marked is determined by interpreting pathname relative the directory referred to by dirfd.

e If pathname is relative, and dirfd has the value AT_FDCWD, then the filesystem object to be
marked is determined by interpreting pathname relative to the current working directory. (See ope-
nat(2) for an explanation of why the dirfd argument is useful.)

RETURN VALUE
On success, fanotify_mark() returns 0. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EBADF
An invalid file descriptor was passed in fanotify fd.

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was updated without
the FAN_MARK_ EVICTABLE flag, and the user attempted to update the mark with
FAN_MARK_EVICTABLE flag.

Linux man-pages 6.7 2023-10-31 4

fanotify_mark(2) System Calls Manual fanotify_mark(2)

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was updated with the
FAN_MARK_IGNORE flag, and the user attempted to update the mark with
FAN_MARK_IGNORED_MASK flag.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was updated with the
FAN_MARK_IGNORE and FAN_MARK_IGNORED_SURV_MODIFY flags, and the
user attempted to update the mark only with FAN_MARK _IGNORE flag.

EINVAL
An invalid value was passed in flags or mask, or fanotify_fd was not an fanotify file descrip-
tor.

EINVAL
The fanotify file descriptor was opened with FAN_CLASS_NOTIF or the fanotify group
identifies filesystem objects by file handles and mask contains a flag for permission events
(FAN_OPEN_PERM or FAN_ACCESS_PERM).

EINVAL
The group was initialized without FAN_REPORT _FID but one or more event types specified
in the mask require it.

EINVAL
flags contains FAN_MARK_IGNORE, and either FAN_MARK_MOUNT or
FAN_MARK_FILESYSTEM, but does not contain FAN_MARK_IG-
NORED_SURV_MODIFY.

EISDIR
flags contains FAN_MARK_IGNORE, but does not contain FAN_MARK_IG-
NORED_SURV_MODIFY, and dirfd and pathname specify a directory.

ENODEV
The filesystem object indicated by dirfd and pathname is not associated with a filesystem that
supports fsid (e.g., fuse(4)). tmpfs(5) did not support fsid prior to Linux 5.13. This error can
be returned only with an fanotify group that identifies filesystem objects by file handles.

ENOENT
The filesystem object indicated by dirfd and pathname does not exist. This error also occurs
when trying to remove a mark from an object which is not marked.

ENOMEM
The necessary memory could not be allocated.

ENOSPC
The number of marks for this user exceeds the limit and the FAN_UNLIMITED_MARKS
flag was not specified when the fanotify file descriptor was created with fanotify init(2). See
fanotify(7) for details about this limit.

ENOSYS
This kernel does not implement fanotify_mark(). The fanotify API is available only if the
kernel was configured with CONFIG_FANOTIFY.

ENOTDIR
flags contains FAN_MARK_ONLYDIR, and dirfd and pathname do not specify a directory.

ENOTDIR
mask contains FAN_RENAME, and dirfd and pathname do not specify a directory.

ENOTDIR
flags contains FAN_MARK_ IGNORE, or the fanotify group was initialized with flag
FAN_REPORT_TARGET _FID, and mask contains directory entry modification events (e.g.,
FAN_CREATE, FAN_DELETE), or directory event flags (e.g, FAN_ONDIR,
FAN_EVENT_ON_CHILD), and dirfd and pathname do not specify a directory.

EOPNOTSUPP
The object indicated by pathname is associated with a filesystem that does not support the en-
coding of file handles. This error can be returned only with an fanotify group that identifies

Linux man-pages 6.7 2023-10-31 5

fanotify_mark(2) System Calls Manual fanotify_mark(2)

filesystem objects by file handles. Calling name_to_handle_at(2) with the flag AT_HAN-
DLE_FID (since Linux 6.5) can be used as a test to check if a filesystem supports reporting
events with file handles.

EPERM
The operation is not permitted because the caller lacks a required capability.

EXDEV
The filesystem object indicated by pathname resides within a filesystem subvolume (e.g.,
btrfs(5)) which uses a different fsid than its root superblock. This error can be returned only
with an fanotify group that identifies filesystem objects by file handles.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

NOTES
FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM
When using either FAN_OPEN_EXEC or FAN_OPEN_EXEC_PERM within the mask, events of
these types will be returned only when the direct execution of a program occurs. More specifically, this
means that events of these types will be generated for files that are opened using execve(2), execveat(2),
or uselib(2). Events of these types will not be raised in the situation where an interpreter is passed (or
reads) a file for interpretation.

Additionally, if a mark has also been placed on the Linux dynamic linker, a user should also expect to
receive an event for it when an ELF object has been successfully opened using execve(2) or
execveat(2).

For example, if the following ELF binary were to be invoked and a FAN_OPEN_EXEC mark has
been placed on /:

$ /bin/echo foo

The listening application in this case would receive FAN_OPEN_EXEC events for both the ELF bi-
nary and interpreter, respectively:

/bin/echo
/11b64/1d-1inux—x86-64.s0.2

BUGS
The following bugs were present in before Linux 3.16:

« If flags contains FAN_MARK_FLUSH, dirfd, and pathname must specify a valid filesystem ob-
ject, even though this object is not used.

* readdir(2) does not generate a FAN_ACCESS event.
« If fanotify_mark() is called with FAN_MARK_FLUSH, flags is not checked for invalid values.

SEE ALSO
fanotify_init(2), fanotify(7)

Linux man-pages 6.7 2023-10-31 6

fentl(2) System Calls Manual fentl(2)

NAME

fcntl — manipulate file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <fcntl.h>
int fentl(int fd, int op, ... /* arg */);

DESCRIPTION
fcntl() performs one of the operations described below on the open file descriptor fd. The operation is
determined by op.

fcntl() can take an optional third argument. Whether or not this argument is required is determined by
op. The required argument type is indicated in parentheses after each op name (in most cases, the re-
quired type is int, and we identify the argument using the name arg), or void is specified if the argu-
ment is not required.

Certain of the operations below are supported only since a particular Linux kernel version. The pre-
ferred method of checking whether the host kernel supports a particular operation is to invoke fcntl()
with the desired op value and then test whether the call failed with EINVAL, indicating that the kernel
does not recognize this value.

Duplicating a file descriptor
F_DUPFD (int)
Duplicate the file descriptor fd using the lowest-numbered available file descriptor greater
than or equal to arg. This is different from dup2(2), which uses exactly the file descriptor
specified.

On success, the new file descriptor is returned.
See dup(2) for further details.

F_DUPFD_CLOEXEC (int; since Linux 2.6.24)
As for F_DUPFD, but additionally set the close-on-exec flag for the duplicate file descriptor.
Specifying this flag permits a program to avoid an additional fcntl() F_SETFD operation to
set the FD_CLOEXEC flag. For an explanation of why this flag is useful, see the description
of O_CLOEXEC in open(2).

File descriptor flags
The following operations manipulate the flags associated with a file descriptor. Currently, only one
such flag is defined: FD_CLOEXEC, the close-on-exec flag. If the FD_CLOEXEC bit is set, the file
descriptor will automatically be closed during a successful execve(2). (If the execve(2) fails, the file de-
scriptor is left open.) If the FD_CLOEXEC bit is not set, the file descriptor will remain open across
an execve(2).

F_GETFD (void)
Return (as the function result) the file descriptor flags; arg is ignored.
F_SETFD (int)
Set the file descriptor flags to the value specified by arg.
In multithreaded programs, using fcntl() F_SETFD to set the close-on-exec flag at the same time as
another thread performs a fork(2) plus execve(2) is vulnerable to a race condition that may unintention-

ally leak the file descriptor to the program executed in the child process. See the discussion of the
O_CLOEXEC flag in open(2) for details and a remedy to the problem.

File status flags
Each open file description has certain associated status flags, initialized by open(2) and possibly modi-
fied by fcntl(). Duplicated file descriptors (made with dup(2), fcntl(F_DUPFD), fork(2), etc.) refer to
the same open file description, and thus share the same file status flags.

The file status flags and their semantics are described in open(2).

F_GETFL (void)
Return (as the function result) the file access mode and the file status flags; arg is ignored.

Linux man-pages 6.7 2024-03-03 1

fentl(2) System Calls Manual fentl(2)

F_SETFL (int)
Set the file status flags to the value specified by arg. File access mode (O_RDONLY,
O_WRONLY, O_RDWR) and file creation flags (i.e., O_CREAT, O_EXCL, O_NOCTTY,
O_TRUNC) in arg are ignored. On Linux, this operation can change only the O_APPEND,
O_ASYNC, O_DIRECT, O_NOATIME, and O_NONBLOCK flags. It is not possible to
change the O_DSYNC and O_SYNC flags; see BUGS, below.

Advisory record locking
Linux implements traditional (“process-associated™) UNIX record locks, as standardized by POSIX.
For a Linux-specific alternative with better semantics, see the discussion of open file description locks
below.

F SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test for the existence of
record locks (also known as byte-range, file-segment, or file-region locks). The third argument, lock, is
a pointer to a structure that has at least the following fields (in unspecified order).

struct flock {

short 1_type; /* Type of lock: F_RDLCK,
F_WRLCK, F_UNLCK */
short 1_whence; /* How to interpret 1_start:
SEEK_SET, SEEK_CUR, SEEK END */
off_t I _start; /* Starting offset for lock */
off t I len; /* Number of bytes to lock */
pid_t 1_pid; /* PID of process blocking our lock
(set by F_GETLK and F_OFD_GETLK) */

}:
The |_whence, |_start, and |_len fields of this structure specify the range of bytes we wish to lock.
Bytes past the end of the file may be locked, but not bytes before the start of the file.

I_start is the starting offset for the lock, and is interpreted relative to either: the start of the file (if
I_whence is SEEK_SET); the current file offset (if |_whence is SEEK_CUR); or the end of the file (if
I_whence is SEEK_END). In the final two cases, |_start can be a negative number provided the offset
does not lie before the start of the file.

I_len specifies the number of bytes to be locked. If |_len is positive, then the range to be locked covers
bytes |_start up to and including |_start+l_len-1. Specifying 0 for |_len has the special meaning: lock
all bytes starting at the location specified by |_whence and |_start through to the end of file, no matter
how large the file grows.

POSIX.1-2001 allows (but does not require) an implementation to support a negative |_len value; if
I_len is negative, the interval described by lock covers bytes | start+l_len up to and including
|_start—1. This is supported since Linux 2.4.21 and Linux 2.5.49.

The |_type field can be used to place a read (F_RDLCK) or a write (F_WRLCK) lock on a file. Any
number of processes may hold a read lock (shared lock) on a file region, but only one process may hold
a write lock (exclusive lock). An exclusive lock excludes all other locks, both shared and exclusive. A
single process can hold only one type of lock on a file region; if a new lock is applied to an already-
locked region, then the existing lock is converted to the new lock type. (Such conversions may involve
splitting, shrinking, or coalescing with an existing lock if the byte range specified by the new lock does
not precisely coincide with the range of the existing lock.)

F_SETLK (struct flock *)
Acquire a lock (when I_type is F_RDLCK or F_WRLCK) or release a lock (when I_type is
F_UNLCK) on the bytes specified by the |_whence, |_start, and I_len fields of lock. If a con-
flicting lock is held by another process, this call returns —1 and sets errno to EACCES or EA-
GAIN. (The error returned in this case differs across implementations, so POSIX requires a
portable application to check for both errors.)

F_SETLKW (struct flock *)
As for F_SETLK, but if a conflicting lock is held on the file, then wait for that lock to be re-
leased. If a signal is caught while waiting, then the call is interrupted and (after the signal
handler has returned) returns immediately (with return value —1 and errno set to EINTR; see

Linux man-pages 6.7 2024-03-03 2

fentl(2) System Calls Manual fentl(2)

signal(7)).

F_GETLK (struct flock *)
On input to this call, lock describes a lock we would like to place on the file. If the lock could
be placed, fentl() does not actually place it, but returns F_UNLCK in the |_type field of lock
and leaves the other fields of the structure unchanged.

If one or more incompatible locks would prevent this lock being placed, then fcntl() returns
details about one of those locks in the |_type, |_whence, |_start, and |_len fields of lock. If the
conflicting lock is a traditional (process-associated) record lock, then the I_pid field is set to
the PID of the process holding that lock. If the conflicting lock is an open file description
lock, then |_pid is set to —1. Note that the returned information may already be out of date by
the time the caller inspects it.

In order to place a read lock, fd must be open for reading. In order to place a write lock, fd must be
open for writing. To place both types of lock, open a file read-write.

When placing locks with F_SETLKW, the kernel detects deadlocks, whereby two or more processes
have their lock requests mutually blocked by locks held by the other processes. For example, suppose
process A holds a write lock on byte 100 of a file, and process B holds a write lock on byte 200. If
each process then attempts to lock the byte already locked by the other process using F_SETLKW,
then, without deadlock detection, both processes would remain blocked indefinitely. When the kernel
detects such deadlocks, it causes one of the blocking lock requests to immediately fail with the error
EDEADLK; an application that encounters such an error should release some of its locks to allow
other applications to proceed before attempting regain the locks that it requires. Circular deadlocks in-
volving more than two processes are also detected. Note, however, that there are limitations to the ker-
nel’s deadlock-detection algorithm; see BUGS.

As well as being removed by an explicit F_UNLCK, record locks are automatically released when the
process terminates.

Record locks are not inherited by a child created via fork(2), but are preserved across an execve(2).

Because of the buffering performed by the stdio(3) library, the use of record locking with routines in
that package should be avoided; use read(2) and write(2) instead.

The record locks described above are associated with the process (unlike the open file description locks
described below). This has some unfortunate consequences:

« If a process closes any file descriptor referring to a file, then all of the process’s locks on that file
are released, regardless of the file descriptor(s) on which the locks were obtained. This is bad: it
means that a process can lose its locks on a file such as /etc/passwd or /etc/mtab when for some
reason a library function decides to open, read, and close the same file.

» The threads in a process share locks. In other words, a multithreaded program can’t use record
locking to ensure that threads don’t simultaneously access the same region of a file.

Open file description locks solve both of these problems.

Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is in most respects identical
to the traditional record locks described above. This lock type is Linux-specific, and available since
Linux 3.15. (There is a proposal with the Austin Group to include this lock type in the next revision of
POSIX.1.) For an explanation of open file descriptions, see open(2).

The principal difference between the two lock types is that whereas traditional record locks are associ-
ated with a process, open file description locks are associated with the open file description on which
they are acquired, much like locks acquired with flock(2). Consequently (and unlike traditional advi-
sory record locks), open file description locks are inherited across fork(2) (and clone(2) with
CLONE_FILES), and are only automatically released on the last close of the open file description, in-
stead of being released on any close of the file.

Conflicting lock combinations (i.e., a read lock and a write lock or two write locks) where one lock is
an open file description lock and the other is a traditional record lock conflict even when they are ac-
quired by the same process on the same file descriptor.

Open file description locks placed via the same open file description (i.e., via the same file descriptor,
or via a duplicate of the file descriptor created by fork(2), dup(2), fcntl() F_DUPFD, and so on) are

Linux man-pages 6.7 2024-03-03 3

fentl(2) System Calls Manual fentl(2)

always compatible: if a new lock is placed on an already locked region, then the existing lock is con-
verted to the new lock type. (Such conversions may result in splitting, shrinking, or coalescing with an
existing lock as discussed above.)

On the other hand, open file description locks may conflict with each other when they are acquired via
different open file descriptions. Thus, the threads in a multithreaded program can use open file descrip-
tion locks to synchronize access to a file region by having each thread perform its own open(2) on the
file and applying locks via the resulting file descriptor.

As with traditional advisory locks, the third argument to fentl(), lock, is a pointer to an flock structure.
By contrast with traditional record locks, the |_pid field of that structure must be set to zero when using
the operations described below.

The operations for working with open file description locks are analogous to those used with traditional
locks:

F_OFD_SETLK (struct flock *)
Acquire an open file description lock (when I_type is F_RDLCK or F_WRLCK) or release
an open file description lock (when I_type is F_UNLCK) on the bytes specified by the
I_whence, |_start, and I_len fields of lock. If a conflicting lock is held by another process, this
call returns -1 and sets errno to EAGAIN.

F_OFD_SETLKW (struct flock *)
As for F_OFD_SETLK, but if a conflicting lock is held on the file, then wait for that lock to
be released. If a signal is caught while waiting, then the call is interrupted and (after the signal
handler has returned) returns immediately (with return value —1 and errno set to EINTR; see
signal(7)).

F_OFD_GETLK (struct flock *)
On input to this call, lock describes an open file description lock we would like to place on the
file. If the lock could be placed, fcntl() does not actually place it, but returns F_ UNLCK in
the |_type field of lock and leaves the other fields of the structure unchanged. If one or more
incompatible locks would prevent this lock being placed, then details about one of these locks
are returned via lock, as described above for F_ GETLK.

In the current implementation, no deadlock detection is performed for open file description locks.
(This contrasts with process-associated record locks, for which the kernel does perform deadlock detec-
tion.)

Mandatory locking
Warning: the Linux implementation of mandatory locking is unreliable. See BUGS below. Because of
these bugs, and the fact that the feature is believed to be little used, since Linux 4.5, mandatory locking
has been made an optional feature, governed by a configuration option (CONFIG_MANDA-
TORY_FILE_LOCKING). This feature is no longer supported at all in Linux 5.15 and above.

By default, both traditional (process-associated) and open file description record locks are advisory.
Advisory locks are not enforced and are useful only between cooperating processes.

Both lock types can also be mandatory. Mandatory locks are enforced for all processes. If a process
tries to perform an incompatible access (e.g., read(2) or write(2)) on a file region that has an incompati-
ble mandatory lock, then the result depends upon whether the O_NONBLOCK flag is enabled for its
open file description. If the O_NONBLOCK flag is not enabled, then the system call is blocked until
the lock is removed or converted to a mode that is compatible with the access. If the O_NONBLOCK
flag is enabled, then the system call fails with the error EAGAIN.

To make use of mandatory locks, mandatory locking must be enabled both on the filesystem that con-
tains the file to be locked, and on the file itself. Mandatory locking is enabled on a filesystem using the
"—0 mand" option to mount(8), or the MS_MANDLOCK flag for mount(2). Mandatory locking is en-
abled on a file by disabling group execute permission on the file and enabling the set-group-1D permis-
sion bit (see chmod (1) and chmod(2)).

Mandatory locking is not specified by POSIX. Some other systems also support mandatory locking, al-
though the details of how to enable it vary across systems.

Linux man-pages 6.7 2024-03-03 4

fentl(2) System Calls Manual fentl(2)

Lost locks
When an advisory lock is obtained on a networked filesystem such as NFS it is possible that the lock
might get lost. This may happen due to administrative action on the server, or due to a network parti-
tion (i.e., loss of network connectivity with the server) which lasts long enough for the server to assume
that the client is no longer functioning.

When the filesystem determines that a lock has been lost, future read(2) or write(2) requests may fail
with the error EIO. This error will persist until the lock is removed or the file descriptor is closed.
Since Linux 3.12, this happens at least for NFSv4 (including all minor versions).

Some versions of UNIX send a signal (SIGLOST) in this circumstance. Linux does not define this
signal, and does not provide any asynchronous notification of lost locks.

Managing signals
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and F_SETSIG are
used to manage 1/0O availability signals:

F_GETOWN (void)
Return (as the function result) the process ID or process group ID currently receiving SIGIO
and SIGURG signals for events on file descriptor fd. Process IDs are returned as positive
values; process group IDs are returned as negative values (but see BUGS below). arg is ig-
nored.

F_SETOWN (int)

Set the process ID or process group ID that will receive SIGIO and SIGURG signals for
events on the file descriptor fd. The target process or process group ID is specified in arg. A
process ID is specified as a positive value; a process group ID is specified as a negative value.
Most commonly, the calling process specifies itself as the owner (that is, arg is specified as
getpid(2)).

As well as setting the file descriptor owner, one must also enable generation of signals on the
file descriptor. This is done by using the fentl() F_SETFL operation to set the O_ASYNC
file status flag on the file descriptor. Subsequently, a SIGIO signal is sent whenever input or
output becomes possible on the file descriptor. The fcntl() F_SETSIG operation can be used
to obtain delivery of a signal other than SIGIO.

Sending a signal to the owner process (group) specified by F_ SETOWN is subject to the same
permissions checks as are described for kill(2), where the sending process is the one that em-
ploys F_SETOWN (but see BUGS below). If this permission check fails, then the signal is
silently discarded. Note: The F_SETOWN operation records the caller’s credentials at the
time of the fentl() call, and it is these saved credentials that are used for the permission
checks.

If the file descriptor fd refers to a socket, F_SETOWN also selects the recipient of SIGURG
signals that are delivered when out-of-band data arrives on that socket. (SIGURG is sent in
any situation where select(2) would report the socket as having an “exceptional condition™.)

The following was true in Linux 2.6.x up to and including Linux 2.6.11:

If a nonzero value is given to F_SETSIG in a multithreaded process running with a
threading library that supports thread groups (e.g., NPTL), then a positive value given
to F_SETOWN has a different meaning: instead of being a process ID identifying a
whole process, it is a thread ID identifying a specific thread within a process. Conse-
quently, it may be necessary to pass F_SETOWN the result of gettid(2) instead of
getpid(2) to get sensible results when F_SETSIG is used. (In current Linux thread-
ing implementations, a main thread’s thread ID is the same as its process ID. This
means that a single-threaded program can equally use gettid(2) or getpid(2) in this
scenario.) Note, however, that the statements in this paragraph do not apply to the
SIGURG signal generated for out-of-band data on a socket: this signal is always sent
to either a process or a process group, depending on the value given to F_ SETOWN.

The above behavior was accidentally dropped in Linux 2.6.12, and won’t be restored. From
Linux 2.6.32 onward, use F_SETOWN_EX to target SIGIO and SIGURG signals at a partic-
ular thread.

Linux man-pages 6.7 2024-03-03 5

fentl(2) System Calls Manual fentl(2)

F_GETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
Return the current file descriptor owner settings as defined by a previous F_SETOWN_EX
operation. The information is returned in the structure pointed to by arg, which has the fol-

lowing form:
struct T owner_ex {
int type;
pid_t pid;

};
The type field will have one of the values F_ OWNER _TID, F_ OWNER _PID, or

F_OWNER_PGRP. The pid field is a positive integer representing a thread ID, process ID,
or process group ID. See F_SETOWN_EX for more details.

F_SETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
This operation performs a similar task to F_SETOWN. It allows the caller to direct I/O avail-
ability signals to a specific thread, process, or process group. The caller specifies the target of
signals via arg, which is a pointer to a f_owner_ex structure. The type field has one of the
following values, which define how pid is interpreted:

F_OWNER_TID
Send the signal to the thread whose thread ID (the value returned by a call to clone(2)
or gettid(2)) is specified in pid.

F_OWNER_PID
Send the signal to the process whose ID is specified in pid.

F_OWNER_PGRP
Send the signal to the process group whose ID is specified in pid. (Note that, unlike
with F_SETOWN, a process group ID is specified as a positive value here.)

F_GETSIG (void)
Return (as the function result) the signal sent when input or output becomes possible. A value
of zero means SIGIO is sent. Any other value (including SIGIO) is the signal sent instead,
and in this case additional info is available to the signal handler if installed with SA_SIG-
INFO. arg is ignored.

F_SETSIG (int)
Set the signal sent when input or output becomes possible to the value given in arg. A value
of zero means to send the default SIGIO signal. Any other value (including SIGIO) is the
signal to send instead, and in this case additional info is available to the signal handler if in-
stalled with SA_SIGINFO.

By using F_SETSIG with a nonzero value, and setting SA_SIGINFO for the signal handler
(see sigaction(2)), extra information about 1/O events is passed to the handler in a siginfo_t
structure. If the si_code field indicates the source is SI_SIGIO, the si_fd field gives the file
descriptor associated with the event. Otherwise, there is no indication which file descriptors
are pending, and you should use the usual mechanisms (select(2), poll(2), read(2) with
O_NONBLOCK set etc.) to determine which file descriptors are available for 1/0.

Note that the file descriptor provided in si_fd is the one that was specified during the F_SET-
SIG operation. This can lead to an unusual corner case. If the file descriptor is duplicated
(dup(2) or similar), and the original file descriptor is closed, then 1/O events will continue to
be generated, but the si_fd field will contain the number of the now closed file descriptor.

By selecting a real time signal (value >= SIGRTMIN), multiple 1/O events may be queued us-
ing the same signal numbers. (Queuing is dependent on available memory.) Extra informa-
tion is available if SA_SIGINFO is set for the signal handler, as above.

Note that Linux imposes a limit on the number of real-time signals that may be queued to a
process (see getrlimit(2) and signal(7)) and if this limit is reached, then the kernel reverts to
delivering SIGIO, and this signal is delivered to the entire process rather than to a specific
thread.

Using these mechanisms, a program can implement fully asynchronous 1/0 without using select(2) or
poll(2) most of the time.

Linux man-pages 6.7 2024-03-03 6

fentl(2) System Calls Manual fentl(2)

The use of O_ASYNC is specific to BSD and Linux. The only use of F_ GETOWN and F_SETOWN
specified in POSIX.1 is in conjunction with the use of the SIGURG signal on sockets. (POSIX does
not specify the SIGIO signal.) F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and F_SETSIG
are Linux-specific. POSIX has asynchronous 1/O and the aio_sigevent structure to achieve similar
things; these are also available in Linux as part of the GNU C Library (glibc).

Leases
F SETLEASE and F_GETLEASE (Linux 2.4 onward) are used to establish a new lease, and retrieve
the current lease, on the open file description referred to by the file descriptor fd. A file lease provides
a mechanism whereby the process holding the lease (the "lease holder") is notified (via delivery of a
signal) when a process (the "lease breaker") tries to open(2) or truncate(2) the file referred to by that
file descriptor.

F_SETLEASE (int)
Set or remove a file lease according to which of the following values is specified in the integer
arg:

F_RDLCK
Take out a read lease. This will cause the calling process to be notified when the file
is opened for writing or is truncated. A read lease can be placed only on a file de-
scriptor that is opened read-only.

F_WRLCK
Take out a write lease. This will cause the caller to be notified when the file is
opened for reading or writing or is truncated. A write lease may be placed on a file
only if there are no other open file descriptors for the file.

F UNLCK
Remove our lease from the file.

Leases are associated with an open file description (see open(2)). This means that duplicate file de-
scriptors (created by, for example, fork(2) or dup(2)) refer to the same lease, and this lease may be
modified or released using any of these descriptors. Furthermore, the lease is released by either an ex-
plicit F_UNLCK operation on any of these duplicate file descriptors, or when all such file descriptors
have been closed.

Leases may be taken out only on regular files. An unprivileged process may take out a lease only on a
file whose UID (owner) matches the filesystem UID of the process. A process with the CAP_LEASE
capability may take out leases on arbitrary files.

F_GETLEASE (void)
Indicates what type of lease is associated with the file descriptor fd by returning either
F RDLCK, F_WRLCK, or F_UNLCK, indicating, respectively, a read lease , a write lease,
or no lease. arg is ignored.

When a process (the "lease breaker™) performs an open(2) or truncate(2) that conflicts with a lease es-
tablished via F_SETLEASE, the system call is blocked by the kernel and the kernel notifies the lease
holder by sending it a signal (SIGIO by default). The lease holder should respond to receipt of this
signal by doing whatever cleanup is required in preparation for the file to be accessed by another
process (e.g., flushing cached buffers) and then either remove or downgrade its lease. A lease is re-
moved by performing an F_SETLEASE operation specifying arg as F_UNLCK. If the lease holder
currently holds a write lease on the file, and the lease breaker is opening the file for reading, then it is
sufficient for the lease holder to downgrade the lease to a read lease. This is done by performing an
F_SETLEASE operation specifying arg as F_RDLCK.

If the lease holder fails to downgrade or remove the lease within the number of seconds specified in
Iproc/sys/fs/lease—break—time, then the kernel forcibly removes or downgrades the lease holder’s
lease.

Once a lease break has been initiated, F_GETLEASE returns the target lease type (either F_ RDLCK
or F_UNLCK, depending on what would be compatible with the lease breaker) until the lease holder
voluntarily downgrades or removes the lease or the kernel forcibly does so after the lease break timer
expires.

Once the lease has been voluntarily or forcibly removed or downgraded, and assuming the lease
breaker has not unblocked its system call, the kernel permits the lease breaker’s system call to proceed.

Linux man-pages 6.7 2024-03-03 7

fentl(2) System Calls Manual fentl(2)

If the lease breaker’s blocked open(2) or truncate(2) is interrupted by a signal handler, then the system
call fails with the error EINTR, but the other steps still occur as described above. If the lease breaker
is killed by a signal while blocked in open(2) or truncate(2), then the other steps still occur as described
above. If the lease breaker specifies the O_NONBLOCK flag when calling open(2), then the call im-
mediately fails with the error EWOULDBLOCK, but the other steps still occur as described above.

The default signal used to notify the lease holder is SIGIO, but this can be changed using the F_SET-
SIG operation to fentl(). 1f a F_SETSIG operation is performed (even one specifying SIGIO), and the
signal handler is established using SA_SIGINFO, then the handler will receive a siginfo_t structure as
its second argument, and the si_fd field of this argument will hold the file descriptor of the leased file
that has been accessed by another process. (This is useful if the caller holds leases against multiple
files.)

File and directory change notification (dnotify)
F_NOTIFY (int)
(Linux 2.4 onward) Provide notification when the directory referred to by fd or any of the files
that it contains is changed. The events to be notified are specified in arg, which is a bit mask
specified by ORing together zero or more of the following bits:

DN_ACCESS
A file was accessed (read(2), pread(2), readv(2), and similar)
DN_MODIFY
A file was modified (write(2), pwrite(2), writev(2), truncate(2), ftruncate(2), and
similar).
DN_CREATE
A file was created (open(2), creat(2), mknod(2), mkdir(2), link(2), symlink(2), re-
name(2) into this directory).
DN_DELETE
A file was unlinked (unlink(2), rename(2) to another directory, rmdir(2)).
DN_RENAME
A file was renamed within this directory (rename(2)).
DN_ATTRIB
The attributes of a file were changed (chown(2), chmod(2), utime(2), utimensat(2),
and similar).

(In order to obtain these definitions, the _GNU_SOURCE feature test macro must be defined
before including any header files.)

Directory notifications are normally "one-shot", and the application must reregister to receive
further notifications. Alternatively, if DN_MULTISHOT is included in arg, then notification
will remain in effect until explicitly removed.

A series of F_NOTIFY requests is cumulative, with the events in arg being added to the set
already monitored. To disable notification of all events, make an F_NOTIFY call specifying
arg as 0.

Notification occurs via delivery of a signal. The default signal is SIGIO, but this can be
changed using the F_SETSIG operation to fcntl(). (Note that SIGIO is one of the nonqueu-
ing standard signals; switching to the use of a real-time signal means that multiple notifica-
tions can be queued to the process.) In the latter case, the signal handler receives a siginfo_t
structure as its second argument (if the handler was established using SA_SIGINFO) and the
si_fd field of this structure contains the file descriptor which generated the notification (useful
when establishing notification on multiple directories).

Especially when using DN_MULTISHOT, a real time signal should be used for notification,
so that multiple notifications can be queued.

NOTE: New applications should use the inotify interface (available since Linux 2.6.13),
which provides a much superior interface for obtaining notifications of filesystem events. See
inotify(7).
Changing the capacity of a pipe
F_SETPIPE_SZ (int; since Linux 2.6.35)
Change the capacity of the pipe referred to by fd to be at least arg bytes. An unprivileged
process can adjust the pipe capacity to any value between the system page size and the limit

Linux man-pages 6.7 2024-03-03 8

fentl(2) System Calls Manual fentl(2)

defined in /proc/sys/fs/pipe—max—size (see proc(5)). Attempts to set the pipe capacity below
the page size are silently rounded up to the page size. Attempts by an unprivileged process to
set the pipe capacity above the limit in /proc/sys/fs/pipe—max—size yield the error EPERM; a
privileged process (CAP_SYS_RESOURCE) can override the limit.

When allocating the buffer for the pipe, the kernel may use a capacity larger than arg, if that is
convenient for the implementation. (In the current implementation, the allocation is the next
higher power-of-two page-size multiple of the requested size.) The actual capacity (in bytes)
that is set is returned as the function result.

Attempting to set the pipe capacity smaller than the amount of buffer space currently used to
store data produces the error EBUSY.

Note that because of the way the pages of the pipe buffer are employed when data is written to
the pipe, the number of bytes that can be written may be less than the nominal size, depending
on the size of the writes.

F_GETPIPE_SZ (void; since Linux 2.6.35)
Return (as the function result) the capacity of the pipe referred to by fd.

File Sealing
File seals limit the set of allowed operations on a given file. For each seal that is set on a file, a specific
set of operations will fail with EPERM on this file from now on. The file is said to be sealed. The de-
fault set of seals depends on the type of the underlying file and filesystem. For an overview of file seal-
ing, a discussion of its purpose, and some code examples, see memfd_create(2).

Currently, file seals can be applied only to a file descriptor returned by memfd_create(2) (if the
MFD_ALLOW_SEALING was employed). On other filesystems, all fcntl() operations that operate
on seals will return EINVAL.

Seals are a property of an inode. Thus, all open file descriptors referring to the same inode share the
same set of seals. Furthermore, seals can never be removed, only added.

F_ADD_SEALS (int; since Linux 3.17)
Add the seals given in the bit-mask argument arg to the set of seals of the inode referred to by
the file descriptor fd. Seals cannot be removed again. Once this call succeeds, the seals are
enforced by the kernel immediately. If the current set of seals includes F_SEAL_SEAL (see
below), then this call will be rejected with EPERM. Adding a seal that is already set is a no-
op, in case F_SEAL_SEAL is not set already. In order to place a seal, the file descriptor fd
must be writable.

F_GET_SEALS (void; since Linux 3.17)
Return (as the function result) the current set of seals of the inode referred to by fd. If no
seals are set, O is returned. If the file does not support sealing, —1 is returned and errno is set
to EINVAL.

The following seals are available:

F_SEAL_SEAL
If this seal is set, any further call to fentl() with F_ADD_SEALS fails with the error EPERM.
Therefore, this seal prevents any modifications to the set of seals itself. If the initial set of
seals of a file includes F_SEAL_SEAL, then this effectively causes the set of seals to be con-
stant and locked.

F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size. This affects open(2) with the
O_TRUNC flag as well as truncate(2) and ftruncate(2). Those calls fail with EPERM if you
try to shrink the file in question. Increasing the file size is still possible.

F_SEAL_GROW
If this seal is set, the size of the file in question cannot be increased. This affects write(2) be-
yond the end of the file, truncate(2), ftruncate(2), and fallocate(2). These calls fail with
EPERM if you use them to increase the file size. If you keep the size or shrink it, those calls
still work as expected.

Linux man-pages 6.7 2024-03-03 9

fentl(2) System Calls Manual fentl(2)

F_SEAL_WRITE
If this seal is set, you cannot modify the contents of the file. Note that shrinking or growing
the size of the file is still possible and allowed. Thus, this seal is normally used in combina-
tion with one of the other seals. This seal affects write(2) and fallocate(2) (only in combina-
tion with the FALLOC_FL_PUNCH_HOLE flag). Those calls fail with EPERM if this seal
is set. Furthermore, trying to create new shared, writable memory-mappings via mmap(2) will
also fail with EPERM.

Using the F_ADD_SEALS operation to set the F_SEAL_WRITE seal fails with EBUSY if
any writable, shared mapping exists. Such mappings must be unmapped before you can add
this seal. Furthermore, if there are any asynchronous 1/O operations (io_submit(2)) pending
on the file, all outstanding writes will be discarded.

F_SEAL_FUTURE_WRITE (since Linux 5.1)
The effect of this seal is similar to F_ SEAL_WRITE, but the contents of the file can still be
modified via shared writable mappings that were created prior to the seal being set. Any at-
tempt to create a new writable mapping on the file via mmap(2) will fail with EPERM. Like-
wise, an attempt to write to the file via write(2) will fail with EPERM.

Using this seal, one process can create a memory buffer that it can continue to modify while
sharing that buffer on a "read-only" basis with other processes.

File read/write hints
Write lifetime hints can be used to inform the kernel about the relative expected lifetime of writes on a
given inode or via a particular open file description. (See open(2) for an explanation of open file de-
scriptions.) In this context, the term "write lifetime™ means the expected time the data will live on me-
dia, before being overwritten or erased.

An application may use the different hint values specified below to separate writes into different write
classes, so that multiple users or applications running on a single storage back-end can aggregate their
I/O patterns in a consistent manner. However, there are no functional semantics implied by these flags,
and different 1/0 classes can use the write lifetime hints in arbitrary ways, so long as the hints are used
consistently.

The following operations can be applied to the file descriptor, fd:

F_GET_RW_HINT (uint64_t *; since Linux 4.13)
Returns the value of the read/write hint associated with the underlying inode referred to by fd.

F SET_RW_HINT (uint64_t *; since Linux 4.13)
Sets the read/write hint value associated with the underlying inode referred to by fd. This hint
persists until either it is explicitly modified or the underlying filesystem is unmounted.

F_GET_FILE_RW_HINT (uint64_t *; since Linux 4.13)
Returns the value of the read/write hint associated with the open file description referred to by
fd.

F SET_FILE_RW_HINT (uint64_t *; since Linux 4.13)
Sets the read/write hint value associated with the open file description referred to by fd.

If an open file description has not been assigned a read/write hint, then it shall use the value assigned to
the inode, if any.

The following read/write hints are valid since Linux 4.13:

RWH_WRITE_LIFE_NOT_SET
No specific hint has been set. This is the default value.

RWH_WRITE_LIFE_NONE
No specific write lifetime is associated with this file or inode.

RWH_WRITE_LIFE_SHORT
Data written to this inode or via this open file description is expected to have a short lifetime.

RWH_WRITE_LIFE_MEDIUM
Data written to this inode or via this open file description is expected to have a lifetime longer
than data written with RWH_WRITE_LIFE_SHORT.

Linux man-pages 6.7 2024-03-03 10

fentl(2) System Calls Manual fentl(2)

RWH_WRITE_LIFE_LONG
Data written to this inode or via this open file description is expected to have a lifetime longer
than data written with RWH_WRITE_LIFE_MEDIUM.

RWH_WRITE_LIFE_EXTREME
Data written to this inode or via this open file description is expected to have a lifetime longer
than data written with RWH_WRITE_LIFE_LONG.

All the write-specific hints are relative to each other, and no individual absolute meaning should be at-
tributed to them.

RETURN VALUE
For a successful call, the return value depends on the operation:

F_DUPFD
The new file descriptor.

F_GETFD
Value of file descriptor flags.

F_GETFL
Value of file status flags.

F_GETLEASE
Type of lease held on file descriptor.

F_GETOWN
Value of file descriptor owner.

F_GETSIG
Value of signal sent when read or write becomes possible, or zero for traditional SIGIO be-
havior.

F_GETPIPE_SZ
F_SETPIPE_SZ
The pipe capacity.
F_GET_SEALS
A bit mask identifying the seals that have been set for the inode referred to by fd.

All other operations
Zero.

On error, =1 is returned, and errno is set to indicate the error.

ERRORS
EACCES or EAGAIN
Operation is prohibited by locks held by other processes.

EAGAIN
The operation is prohibited because the file has been memory-mapped by another process.

EBADF
fd is not an open file descriptor

EBADF
op is F_SETLK or F_SETLKW and the file descriptor open mode doesn’t match with the
type of lock requested.

EBUSY
op is F_SETPIPE_SZ and the new pipe capacity specified in arg is smaller than the amount
of buffer space currently used to store data in the pipe.

EBUSY
op is F_ADD_SEALS, arg includes F_SEAL_WRITE, and there exists a writable, shared
mapping on the file referred to by fd.

EDEADLK
It was detected that the specified F_SETLKW operation would cause a deadlock.

Linux man-pages 6.7 2024-03-03 11

fentl(2) System Calls Manual fentl(2)

EFAULT
lock is outside your accessible address space.

EINTR
op is F_SETLKW or F_OFD_SETLKW and the operation was interrupted by a signal; see
signal(7).

EINTR
opis F_GETLK, F_ SETLK, F OFD_GETLK, or F_OFD_SETLK, and the operation was
interrupted by a signal before the lock was checked or acquired. Most likely when locking a
remote file (e.g., locking over NFS), but can sometimes happen locally.

EINVAL
The value specified in op is not recognized by this kernel.

EINVAL
op is F_ADD_SEALS and arg includes an unrecognized sealing bit.

EINVAL
op is F_ADD_SEALS or F_GET_SEALS and the filesystem containing the inode referred to
by fd does not support sealing.

EINVAL
op is F_DUPFD and arg is negative or is greater than the maximum allowable value (see the
discussion of RLIMIT_NOFILE in getrlimit(2)).

EINVAL
op is F_SETSIG and arg is not an allowable sighal number.
EINVAL
op is F_OFD_SETLK, F_ OFD_SETLKW, or F_OFD_GETLK, and |_pid was not speci-
fied as zero.
EMFILE
op is F_DUPFD and the per-process limit on the number of open file descriptors has been
reached.
ENOLCK
Too many segment locks open, lock table is full, or a remote locking protocol failed (e.g.,
locking over NFS).
ENOTDIR
F_NOTIFY was specified in op, but fd does not refer to a directory.
EPERM
op is F_SETPIPE_SZ and the soft or hard user pipe limit has been reached; see pipe(7).
EPERM
Attempted to clear the O_APPEND flag on a file that has the append-only attribute set.
EPERM

op was F_ADD_SEALS, but fd was not open for writing or the current set of seals on the file
already includes F_SEAL_SEAL.

STANDARDS
POSIX.1-2008.

F_ GETOWN_EX, F_SETOWN_EX, F_ SETPIPE_SZ, F_ GETPIPE_SZ, F_GETSIG, F_SETSIG,
F_NOTIFY, F_GETLEASE, and F_SETLEASE are Linux-specific. (Define the _GNU_SOURCE
macro to obtain these definitions.)

F OFD_SETLK, F_OFD_SETLKW, and F_OFD_GETLK are Linux-specific (and one must define
_GNU_SOURCE to obtain their definitions), but work is being done to have them included in the next
version of POSIX.1.

F_ADD_SEALS and F_GET_SEALS are Linux-specific.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

Only the operations F_DUPFD, F_GETFD, F_SETFD, F GETFL, F SETFL, F GETLK,

Linux man-pages 6.7 2024-03-03 12

fentl(2) System Calls Manual fentl(2)

F _SETLK, and F_SETLKW are specified in POSIX.1-2001.

F_GETOWN and F_SETOWN are specified in POSIX.1-2001. (To get their definitions, define either
_XOPEN_SOURCE with the value 500 or greater, or _POSIX_C_SOURCE with the value 200809L
or greater.)

F DUPFD_CLOEXEC is specified in POSIX.1-2008. (To get this definition, define
_POSIX_C_SOURCE with the value 200809L or greater, or _XOPEN_SOURCE with the value 700
or greater.)

NOTES
The errors returned by dup2(2) are different from those returned by F_DUPFD.

File locking
The original Linux fcntl() system call was not designed to handle large file offsets (in the flock struc-
ture). Consequently, an fcntl64() system call was added in Linux 2.4. The newer system call employs
a different structure for file locking, flock64, and corresponding operations, F_GETLKG64,
F SETLK®64, and F_SETLKW®64. However, these details can be ignored by applications using glibc,
whose fentl() wrapper function transparently employs the more recent system call where it is available.

Record locks
Since Linux 2.0, there is no interaction between the types of lock placed by flock(2) and fcntl().

Several systems have more fields in struct flock such as, for example, |_sysid (to identify the machine
where the lock is held). Clearly, |_pid alone is not going to be very useful if the process holding the
lock may live on a different machine; on Linux, while present on some architectures (such as MIPS32),
this field is not used.

The original Linux fcntl() system call was not designed to handle large file offsets (in the flock struc-
ture). Consequently, an fcntl64() system call was added in Linux 2.4. The newer system call employs
a different structure for file locking, flock64, and corresponding operations, F_GETLKG64,
F SETLK®64, and F_SETLKW®64. However, these details can be ignored by applications using glibc,
whose fentl() wrapper function transparently employs the more recent system call where it is available.

Record locking and NFS

Before Linux 3.12, if an NFSv4 client loses contact with the server for a period of time (defined as
more than 90 seconds with no communication), it might lose and regain a lock without ever being
aware of the fact. (The period of time after which contact is assumed lost is known as the NFSv4 lease-
time. On a Linux NFS server, this can be determined by looking at /proc/fs/nfsd/nfsv4leasetime, which
expresses the period in seconds. The default value for this file is 90.) This scenario potentially risks
data corruption, since another process might acquire a lock in the intervening period and perform file
1/0.

Since Linux 3.12, if an NFSv4 client loses contact with the server, any 1/O to the file by a process
which "thinks" it holds a lock will fail until that process closes and reopens the file. A kernel parame-
ter, nfs.recover_lost_locks, can be set to 1 to obtain the pre-3.12 behavior, whereby the client will at-
tempt to recover lost locks when contact is reestablished with the server. Because of the attendant risk
of data corruption, this parameter defaults to 0 (disabled).

BUGS
F_SETFL
It is not possible to use F_SETFL to change the state of the O_DSYNC and O_SYNC flags. Attempts
to change the state of these flags are silently ignored.

F_GETOWN
A limitation of the Linux system call conventions on some architectures (notably i386) means that if a
(negative) process group ID to be returned by F_GETOWN falls in the range —1 to —4095, then the re-
turn value is wrongly interpreted by glibc as an error in the system call; that is, the return value of fc-
ntl() will be -1, and errno will contain the (positive) process group ID. The Linux-specific
F_ GETOWN_EX operation avoids this problem. Since glibc 2.11, glibc makes the kernel
F_GETOWN problem invisible by implementing F_GETOWN using F_GETOWN_EX.

F_SETOWN
In Linux 2.4 and earlier, there is bug that can occur when an unprivileged process uses F_SETOWN to
specify the owner of a socket file descriptor as a process (group) other than the caller. In this case, fc-
ntl() can return -1 with errno set to EPERM, even when the owner process (group) is one that the

Linux man-pages 6.7 2024-03-03 13

fentl(2) System Calls Manual fentl(2)

caller has permission to send signals to. Despite this error return, the file descriptor owner is set, and
signals will be sent to the owner.

Deadlock detection

The deadlock-detection algorithm employed by the kernel when dealing with F_SETLKW requests
can yield both false negatives (failures to detect deadlocks, leaving a set of deadlocked processes
blocked indefinitely) and false positives (EDEADLK errors when there is no deadlock). For example,
the kernel limits the lock depth of its dependency search to 10 steps, meaning that circular deadlock
chains that exceed that size will not be detected. In addition, the kernel may falsely indicate a deadlock
when two or more processes created using the clone(2) CLONE_FILES flag place locks that appear
(to the kernel) to conflict.

Mandatory locking
The Linux implementation of mandatory locking is subject to race conditions which render it unreli-
able: a write(2) call that overlaps with a lock may modify data after the mandatory lock is acquired; a
read(2) call that overlaps with a lock may detect changes to data that were made only after a write lock
was acquired. Similar races exist between mandatory locks and mmap(2). It is therefore inadvisable to
rely on mandatory locking.

SEE ALSO
dup2(2), flock(2), open(2), socket(2), lockf(3), capabilities(7), feature_test_macros(7), Islocks(8)

locks.txt, mandatory—locking.txt, and dnotify.txt in the Linux kernel source directory Documenta-
tion/filesystems/ (on older kernels, these files are directly under the Documentation/ directory, and
mandatory—locking.txt is called mandatory.txt)

Linux man-pages 6.7 2024-03-03 14

flock(2) System Calls Manual flock(2)

NAME

flock — apply or remove an advisory lock on an open file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/file.h>
int flock(int fd, int op);

DESCRIPTION
Apply or remove an advisory lock on the open file specified by fd. The argument op is one of the fol-
lowing:
LOCK_SH
Place a shared lock. More than one process may hold a shared lock for a given file at a
given time.
LOCK_EX

Place an exclusive lock. Only one process may hold an exclusive lock for a given file
at a given time.

LOCK_UN
Remove an existing lock held by this process.

A call to flock() may block if an incompatible lock is held by another process. To make a nonblocking
request, include LOCK_NB (by ORing) with any of the above operations.

A single file may not simultaneously have both shared and exclusive locks.

Locks created by flock() are associated with an open file description (see open(2)). This means that du-
plicate file descriptors (created by, for example, fork(2) or dup(2)) refer to the same lock, and this lock
may be modified or released using any of these file descriptors. Furthermore, the lock is released either
by an explicit LOCK_UN operation on any of these duplicate file descriptors, or when all such file de-
scriptors have been closed.

If a process uses open(2) (or similar) to obtain more than one file descriptor for the same file, these file
descriptors are treated independently by flock(). An attempt to lock the file using one of these file de-
scriptors may be denied by a lock that the calling process has already placed via another file descriptor.

A process may hold only one type of lock (shared or exclusive) on a file. Subsequent flock() calls on
an already locked file will convert an existing lock to the new lock mode.

Locks created by flock() are preserved across an execve(2).
A shared or exclusive lock can be placed on a file regardless of the mode in which the file was opened.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EBADF
fd is not an open file descriptor.

EINTR
While waiting to acquire a lock, the call was interrupted by delivery of a signal caught by a
handler; see signal(7).

EINVAL
op is invalid.
ENOLCK
The kernel ran out of memory for allocating lock records.

EWOULDBLOCK
The file is locked and the LOCK_NB flag was selected.

VERSIONS
Since Linux 2.0, flock() is implemented as a system call in its own right rather than being emulated in
the GNU C library as a call to fentl(2). With this implementation, there is no interaction between the

Linux man-pages 6.7 2024-03-03 1

flock(2) System Calls Manual flock(2)

types of lock placed by flock() and fcntl(2), and flock() does not detect deadlock. (Note, however, that
on some systems, such as the modern BSDs, flock() and fcntl(2) locks do interact with one another.)

CIFS details
Up to Linux 5.4, flock() is not propagated over SMB. A file with such locks will not appear locked for
remote clients.

Since Linux 5.5, flock() locks are emulated with SMB byte-range locks on the entire file. Similarly to
NFS, this means that fcntl(2) and flock() locks interact with one another. Another important side-effect
is that the locks are not advisory anymore: any 10 on a locked file will always fail with EACCES when
done from a separate file descriptor. This difference originates from the design of locks in the SMB
protocol, which provides mandatory locking semantics.

Remote and mandatory locking semantics may vary with SMB protocol, mount options and server
type. See mount.cifs(8) for additional information.

STANDARDS
BSD.

HISTORY
4.4BSD (the flock() call first appeared in 4.2BSD). A version of flock(), possibly implemented in
terms of fcntl(2), appears on most UNIX systems.

NFS details
Up to Linux 2.6.11, flock() does not lock files over NFS (i.e., the scope of locks was limited to the local
system). Instead, one could use fcntl(2) byte-range locking, which does work over NFS, given a suffi-
ciently recent version of Linux and a server which supports locking.

Since Linux 2.6.12, NFS clients support flock() locks by emulating them as fcntl(2) byte-range locks
on the entire file. This means that fcntl(2) and flock() locks do interact with one another over NFS. It
also means that in order to place an exclusive lock, the file must be opened for writing.

Since Linux 2.6.37, the kernel supports a compatibility mode that allows flock() locks (and also fcntl(2)
byte region locks) to be treated as local; see the discussion of the local_lock option in nfs(5)

NOTES
flock() places advisory locks only; given suitable permissions on a file, a process is free to ignore the
use of flock() and perform 1/O on the file.

flock() and fcntl(2) locks have different semantics with respect to forked processes and dup(2). On sys-
tems that implement flock() using fcntl(2), the semantics of flock() will be different from those de-
scribed in this manual page.

Converting a lock (shared to exclusive, or vice versa) is not guaranteed to be atomic: the existing lock
is first removed, and then a new lock is established. Between these two steps, a pending lock request
by another process may be granted, with the result that the conversion either blocks, or fails if
LOCK_NB was specified. (This is the original BSD behavior, and occurs on many other implementa-
tions.)

SEE ALSO
flock (1), close(2), dup(2), execve(2), fentl(2), fork(2), open(2), lockf(3), Islocks(8)

Documentation/filesystems/locks.txt in the Linux kernel source tree (Documentation/locks.txt in older
kernels)

Linux man-pages 6.7 2024-03-03 2

fork(2)

NAME

System Calls Manual fork(2)

fork — create a child process

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS
#include <unistd.h>
pid_t fork(void);

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new process is referred to as the
child process. The calling process is referred to as the parent process.

The child process and the parent process run in separate memory spaces. At the time of fork() both
memory spaces have the same content. Memory writes, file mappings (mmap(2)), and unmappings
(munmap(2)) performed by one of the processes do not affect the other.

The child process is an exact duplicate of the parent process except for the following points:

The child has its own unique process ID, and this PID does not match the ID of any existing
process group (setpgid(2)) or session.

The child’s parent process ID is the same as the parent’s process ID.
The child does not inherit its parent’s memory locks (mlock(2), mlockall(2)).

Process resource utilizations (getrusage(2)) and CPU time counters (times(2)) are reset to zero in
the child.

The child’s set of pending signals is initially empty (sigpending(2)).
The child does not inherit semaphore adjustments from its parent (semop(2)).

The child does not inherit process-associated record locks from its parent (fcntl(2)). (On the other
hand, it does inherit fcntl(2) open file description locks and flock(2) locks from its parent.)

The child does not inherit timers from its parent (setitimer(2), alarm(2), timer_create(2)).

The child does not inherit outstanding asynchronous 1/O operations from its parent (aio_read(3),
aio_write(3)), nor does it inherit any asynchronous 1/O contexts from its parent (see io_setup(2)).

The process attributes in the preceding list are all specified in POSIX.1. The parent and child also dif-
fer with respect to the following Linux-specific process attributes:

The child does not inherit directory change notifications (dnotify) from its parent (see the descrip-
tion of F_NOTIFY in fcntl(2)).

The prctl(2) PR_SET_PDEATHSIG setting is reset so that the child does not receive a signal
when its parent terminates.

The default timer slack value is set to the parent’s current timer slack value. See the description of
PR_SET_TIMERSLACK in prctl(2).

Memory mappings that have been marked with the madvise(2) MADV_DONTFORK flag are not
inherited across a fork().

Memory in address ranges that have been marked with the madvise(2) MADV_WIPEONFORK
flag is zeroed in the child after a fork(). (The MADV_WIPEONFORK setting remains in place
for those address ranges in the child.)

The termination signal of the child is always SIGCHLD (see clone(2)).

The port access permission bits set by ioperm(2) are not inherited by the child; the child must turn
on any bits that it requires using ioperm(2).

Note the following further points:

The child process is created with a single thread—the one that called fork(). The entire virtual ad-
dress space of the parent is replicated in the child, including the states of mutexes, condition vari-
ables, and other pthreads objects; the use of pthread_atfork(3) may be helpful for dealing with
problems that this can cause.

Linux man-pages 6.7 2023-10-31 1

fork(2) System Calls Manual fork(2)

« After a fork() in a multithreaded program, the child can safely call only async-signal-safe functions
(see signal-safety(7)) until such time as it calls execve(2).

» The child inherits copies of the parent’s set of open file descriptors. Each file descriptor in the child
refers to the same open file description (see open(2)) as the corresponding file descriptor in the par-
ent. This means that the two file descriptors share open file status flags, file offset, and signal-dri-
ven 1/O attributes (see the description of F_SETOWN and F_SETSIG in fcntl(2)).

e The child inherits copies of the parent’s set of open message queue descriptors (see
mq_overview(7)). Each file descriptor in the child refers to the same open message queue descrip-
tion as the corresponding file descriptor in the parent. This means that the two file descriptors share
the same flags (mqg_flags).

« The child inherits copies of the parent’s set of open directory streams (see opendir(3)). POSIX.1
says that the corresponding directory streams in the parent and child may share the directory stream
positioning; on Linux/glibc they do not.

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is returned in the child. On
failure, —1 is returned in the parent, no child process is created, and errno is set to indicate the error.

ERRORS
EAGAIN
A system-imposed limit on the number of threads was encountered. There are a number of
limits that may trigger this error:
« the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits the number of
processes and threads for a real user ID, was reached,;
» the kernel’s system-wide limit on the number of processes and threads, /proc/sys/ker-
nel/threads—max, was reached (see proc(5));
» the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see proc(5)); or
« the PID limit (pids.max) imposed by the cgroup "process number" (PIDs) controller was
reached.
EAGAIN
The caller is operating under the SCHED_DEADLINE scheduling policy and does not have
the reset-on-fork flag set. See sched(7).
ENOMEM
fork() failed to allocate the necessary kernel structures because memory is tight.
ENOMEM
An attempt was made to create a child process in a PID namespace whose "init" process has
terminated. See pid_namespaces(7).
ENOSYS
fork() is not supported on this platform (for example, hardware without a Memory-Manage-
ment Unit).

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen only during a
trace.)

VERSIONS
C library/kernel differences
Since glibc 2.3.3, rather than invoking the kernel’s fork() system call, the glibc fork() wrapper that is
provided as part of the NPTL threading implementation invokes clone(2) with flags that provide the
same effect as the traditional system call. (A call to fork() is equivalent to a call to clone(2) specifying
flags as just SIGCHLD.) The glibc wrapper invokes any fork handlers that have been established us-
ing pthread_atfork(3).

STANDARDS
POSIX.1-2008.

Linux man-pages 6.7 2023-10-31 2

fork(2) System Calls Manual fork(2)

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
Under Linux, fork() is implemented using copy-on-write pages, so the only penalty that it incurs is the
time and memory required to duplicate the parent’s page tables, and to create a unique task structure for
the child.

EXAMPLES
See pipe(2) and wait(2) for more examples.

#include <signal.h>
#include <stdint._h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(void)
{

pid_t pid;

ifT (signal (SIGCHLD, SIG_IGN) == SIG_ERR) {
perror('signal™);
exit(EXIT_FAILURE);

}

pid = fork();

switch (pid) {

case —1:
perror("'fork™™);
exit(EXIT_FAILURE);

case O:
puts('Child exiting.");
exit(EXIT_SUCCESS);

default:
printf('Child is PID %jd\n", (intmax_t) pid);
puts(*'Parent exiting.');
exit(EXIT_SUCCESS);

}

SEE ALSO
clone(2), execve(2), exit(2), setrlimit(2), unshare(2), vfork(2), wait(2), daemon(3), pthread_atfork(3),
capabilities(7), credentials(7)

Linux man-pages 6.7 2023-10-31 3

fsync(2) System Calls Manual fsync(2)

NAME

fsync, fdatasync — synchronize a file’s in-core state with storage device
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int fsync(int fd);
int fdatasync(int fd);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fsync():
glibc 2.16 and later:
No feature test macros need be defined
glibc up to and including 2.15:
_BSD_SOURCE || _XOPEN_SOURCE
|| /* Since glibc 2.8: */ _POSIX_C_SOURCE >= 200112L

fdatasync():
_POSIX_C_SOURCE >=199309L || _XOPEN_SOURCE >= 500

DESCRIPTION
fsync() transfers (“flushes") all modified in-core data of (i.e., modified buffer cache pages for) the file
referred to by the file descriptor fd to the disk device (or other permanent storage device) so that all
changed information can be retrieved even if the system crashes or is rebooted. This includes writing
through or flushing a disk cache if present. The call blocks until the device reports that the transfer has
completed.

As well as flushing the file data, fsync() also flushes the metadata information associated with the file
(see inode(7)).

Calling fsync() does not necessarily ensure that the entry in the directory containing the file has also
reached disk. For that an explicit fsync() on a file descriptor for the directory is also needed.

fdatasync() is similar to fsync(), but does not flush modified metadata unless that metadata is needed in
order to allow a subsequent data retrieval to be correctly handled. For example, changes to st_atime or
st_mtime (respectively, time of last access and time of last modification; see inode(7)) do not require
flushing because they are not necessary for a subsequent data read to be handled correctly. On the
other hand, a change to the file size (st_size, as made by say ftruncate(2)), would require a metadata
flush.

The aim of fdatasync() is to reduce disk activity for applications that do not require all metadata to be
synchronized with the disk.

RETURN VALUE
On success, these system calls return zero. On error, —1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBADF
fd is not a valid open file descriptor.

EINTR
The function was interrupted by a signal; see signal(7).

EIO Anerror occurred during synchronization. This error may relate to data written to some other
file descriptor on the same file. Since Linux 4.13, errors from write-back will be reported to
all file descriptors that might have written the data which triggered the error. Some filesys-
tems (e.g., NFS) keep close track of which data came through which file descriptor, and give
more precise reporting. Other filesystems (e.g., most local filesystems) will report errors to all
file descriptors that were open on the file when the error was recorded.

ENOSPC
Disk space was exhausted while synchronizing.

Linux man-pages 6.7 2023-10-31 1

fsync(2) System Calls Manual fsync(2)

EROFS

EINVAL
fd is bound to a special file (e.g., a pipe, FIFO, or socket) which does not support synchro-
nization.

ENOSPC

EDQUOT
fd is bound to a file on NFS or another filesystem which does not allocate space at the time of
a write(2) system call, and some previous write failed due to insufficient storage space.

VERSIONS
On POSIX systems on which fdatasync() is available, POSIX_SYNCHRONIZED IO is defined in
<unistd.h> to a value greater than 0. (See also sysconf(3).)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.2BSD.

In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so has no performance advantage.

The fsync() implementations in older kernels and lesser used filesystems do not know how to flush disk
caches. In these cases disk caches need to be disabled using hdparm(8) or sdparm(8) to guarantee safe
operation.

Under AT&T UNIX System V Release 4 fd needs to be opened for writing. This is by itself incompat-
ible with the original BSD interface and forbidden by POSIX, but nevertheless survives in HP-UX and
AlX.

SEE ALSO
sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2), sync file_range(2), fflush(3),
fileno(3), hdparm(8), mount(8)

Linux man-pages 6.7 2023-10-31 2

futex(2) System Calls Manual futex(2)

NAME

futex — fast user-space locking
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, /* or: uint32_t val2 */
uint32_t *uaddr2, uint32_t val3);

Note: glibc provides no wrapper for futex(), necessitating the use of syscall(2).

DESCRIPTION
The futex() system call provides a method for waiting until a certain condition becomes true. It is typi-
cally used as a blocking construct in the context of shared-memory synchronization. When using fu-
texes, the majority of the synchronization operations are performed in user space. A user-space pro-
gram employs the futex() system call only when it is likely that the program has to block for a longer
time until the condition becomes true. Other futex() operations can be used to wake any processes or
threads waiting for a particular condition.

A futex is a 32-bit value—referred to below as a futex word—whose address is supplied to the futex()
system call. (Futexes are 32 bits in size on all platforms, including 64-bit systems.) All futex opera-
tions are governed by this value. In order to share a futex between processes, the futex is placed in a
region of shared memory, created using (for example) mmap(2) or shmat(2). (Thus, the futex word
may have different virtual addresses in different processes, but these addresses all refer to the same lo-
cation in physical memory.) In a multithreaded program, it is sufficient to place the futex word in a
global variable shared by all threads.

When executing a futex operation that requests to block a thread, the kernel will block only if the futex
word has the value that the calling thread supplied (as one of the arguments of the futex() call) as the
expected value of the futex word. The loading of the futex word’s value, the comparison of that value
with the expected value, and the actual blocking will happen atomically and will be totally ordered with
respect to concurrent operations performed by other threads on the same futex word. Thus, the futex
word is used to connect the synchronization in user space with the implementation of blocking by the
kernel. Analogously to an atomic compare-and-exchange operation that potentially changes shared
memory, blocking via a futex is an atomic compare-and-block operation.

One use of futexes is for implementing locks. The state of the lock (i.e., acquired or not acquired) can
be represented as an atomically accessed flag in shared memory. In the uncontended case, a thread can
access or modify the lock state with atomic instructions, for example atomically changing it from not
acquired to acquired using an atomic compare-and-exchange instruction. (Such instructions are per-
formed entirely in user mode, and the kernel maintains no information about the lock state.) On the
other hand, a thread may be unable to acquire a lock because it is already acquired by another thread.
It then may pass the lock’s flag as a futex word and the value representing the acquired state as the ex-
pected value to a futex() wait operation. This futex() operation will block if and only if the lock is still
acquired (i.e., the value in the futex word still matches the "acquired state"). When releasing the lock, a
thread has to first reset the lock state to not acquired and then execute a futex operation that wakes
threads blocked on the lock flag used as a futex word (this can be further optimized to avoid unneces-
sary wake-ups). See futex(7) for more detail on how to use futexes.

Besides the basic wait and wake-up futex functionality, there are further futex operations aimed at sup-
porting more complex use cases.

Note that no explicit initialization or destruction is necessary to use futexes; the kernel maintains a fu-
tex (i.e., the kernel-internal implementation artifact) only while operations such as FUTEX_WAIT, de-
scribed below, are being performed on a particular futex word.

Arguments
The uaddr argument points to the futex word. On all platforms, futexes are four-byte integers that must
be aligned on a four-byte boundary. The operation to perform on the futex is specified in the futex_op

Linux man-pages 6.7 2023-10-31 1

futex(2) System Calls Manual futex(2)

argument; val is a value whose meaning and purpose depends on futex_op.

The remaining arguments (timeout, uaddr2, and val3) are required only for certain of the futex opera-
tions described below. Where one of these arguments is not required, it is ignored.

For several blocking operations, the timeout argument is a pointer to a timespec structure that specifies
a timeout for the operation. However, notwithstanding the prototype shown above, for some opera-
tions, the least significant four bytes of this argument are instead used as an integer whose meaning is
determined by the operation. For these operations, the kernel casts the timeout value first to unsigned
long, then to uint32_t, and in the remainder of this page, this argument is referred to as val2 when in-
terpreted in this fashion.

Where it is required, the uaddr2 argument is a pointer to a second futex word that is employed by the
operation.

The interpretation of the final integer argument, val3, depends on the operation.

Futex operations
The futex_op argument consists of two parts: a command that specifies the operation to be performed,
bitwise ORed with zero or more options that modify the behaviour of the operation. The options that
may be included in futex_op are as follows:

FUTEX_PRIVATE_FLAG (since Linux 2.6.22)
This option bit can be employed with all futex operations. It tells the kernel that the futex is
process-private and not shared with another process (i.e., it is being used for synchronization
only between threads of the same process). This allows the kernel to make some additional
performance optimizations.

As a convenience, <linux/futex.n> defines a set of constants with the suffix PRIVATE that
are equivalents of all of the operations listed below, but with the FUTEX_PRIVATE_FLAG
ORed into the constant value. Thus, there are FUTEX WAIT_PRIVATE, FU-
TEX_WAKE_PRIVATE, and so on.

FUTEX_CLOCK_REALTIME (since Linux 2.6.28)
This option bit can be employed only with the FUTEX_WAIT_BITSET, FU-
TEX_WAIT_REQUEUE_PI, (since Linux 4.5) FUTEX_WAIT, and (since Linux 5.14) FU-
TEX_LOCK_PI2 operations.

If this option is set, the kernel measures the timeout against the CLOCK_REALTIME clock.

If this option is not set, the kernel measures the timeout against the CLOCK_MONOTONIC
clock.

The operation specified in futex_op is one of the following:

FUTEX_WAIT (since Linux 2.6.0)

This operation tests that the value at the futex word pointed to by the address uaddr still con-
tains the expected value val, and if so, then sleeps waiting for a FUTEX_WAKE operation on
the futex word. The load of the value of the futex word is an atomic memory access (i.e., us-
ing atomic machine instructions of the respective architecture). This load, the comparison
with the expected value, and starting to sleep are performed atomically and totally ordered
with respect to other futex operations on the same futex word. If the thread starts to sleep, it is
considered a waiter on this futex word. If the futex value does not match val, then the call
fails immediately with the error EAGAIN.

The purpose of the comparison with the expected value is to prevent lost wake-ups. If another
thread changed the value of the futex word after the calling thread decided to block based on
the prior value, and if the other thread executed a FUTEX_WAKE operation (or similar
wake-up) after the value change and before this FUTEX_WAIT operation, then the calling
thread will observe the value change and will not start to sleep.

If the timeout is not NULL, the structure it points to specifies a timeout for the wait. (This in-
terval will be rounded up to the system clock granularity, and is guaranteed not to expire
early.) The timeout is by default measured according to the CLOCK_MONOTONIC clock,
but, since Linux 4.5, the CLOCK_REALTIME clock can be selected by specifying FU-
TEX_CLOCK_REALTIME in futex_op. If timeout is NULL, the call blocks indefinitely.

Linux man-pages 6.7 2023-10-31 2

futex(2) System Calls Manual futex(2)

Note: for FUTEX_WAIT, timeout is interpreted as a relative value. This differs from other
futex operations, where timeout is interpreted as an absolute value. To obtain the equivalent
of FUTEX_WAIT with an absolute timeout, employ FUTEX_WAIT_BITSET with val3
specified as FUTEX_BITSET_MATCH_ANY.

The arguments uaddr2 and val3 are ignored.

FUTEX_WAKE (since Linux 2.6.0)
This operation wakes at most val of the waiters that are waiting (e.g., inside FUTEX_WAIT)
on the futex word at the address uaddr. Most commonly, val is specified as either 1 (wake up
a single waiter) or INT_MAX (wake up all waiters). No guarantee is provided about which
waiters are awoken (e.g., a waiter with a higher scheduling priority is not guaranteed to be
awoken in preference to a waiter with a lower priority).

The arguments timeout, uaddr2, and val3 are ignored.

FUTEX_FD (from Linux 2.6.0 up to and including Linux 2.6.25)
This operation creates a file descriptor that is associated with the futex at uaddr. The caller
must close the returned file descriptor after use. When another process or thread performs a
FUTEX_WAKE on the futex word, the file descriptor indicates as being readable with se-
lect(2), poll(2), and epoll(7)

The file descriptor can be used to obtain asynchronous notifications: if val is nonzero, then,
when another process or thread executes a FUTEX_WAKE, the caller will receive the signal
number that was passed in val.

The arguments timeout, uaddr2, and val3 are ignored.
Because it was inherently racy, FUTEX_FD has been removed from Linux 2.6.26 onward.

FUTEX_REQUEUE (since Linux 2.6.0)
This operation performs the same task as FUTEX_CMP_REQUEUE (see below), except
that no check is made using the value in val3. (The argument val3 is ignored.)

FUTEX_CMP_REQUEUE (since Linux 2.6.7)
This operation first checks whether the location uaddr still contains the value val3. If not, the
operation fails with the error EAGAIN. Otherwise, the operation wakes up a maximum of val
waiters that are waiting on the futex at uaddr. If there are more than val waiters, then the re-
maining waiters are removed from the wait queue of the source futex at uaddr and added to
the wait queue of the target futex at uaddr2. The val2 argument specifies an upper limit on the
number of waiters that are requeued to the futex at uaddr2.

The load from uaddr is an atomic memory access (i.e., using atomic machine instructions of
the respective architecture). This load, the comparison with val3, and the requeueing of any
waiters are performed atomically and totally ordered with respect to other operations on the
same futex word.

Typical values to specify for val are 0 or 1. (Specifying INT_MAX is not useful, because it
would make the FUTEX_CMP_REQUEUE operation equivalent to FUTEX_WAKE.) The
limit value specified via val2 is typically either 1 or INT_MAX. (Specifying the argument as
0 is not useful, because it would make the FUTEX_CMP_REQUEUE operation equivalent
to FUTEX_WAIT.)

The FUTEX_CMP_REQUEUE operation was added as a replacement for the earlier FU-
TEX_REQUEUE. The difference is that the check of the value at uaddr can be used to en-
sure that requeueing happens only under certain conditions, which allows race conditions to be
avoided in certain use cases.

Both FUTEX REQUEUE and FUTEX_CMP_REQUEUE can be used to avoid "thunder-
ing herd" wake-ups that could occur when using FUTEX_WAKE in cases where all of the
waiters that are woken need to acquire another futex. Consider the following scenario, where
multiple waiter threads are waiting on B, a wait queue implemented using a futex:

lock(A)

while (Ycheck value(V)) {
unlock(A);
block_on(B);

Linux man-pages 6.7 2023-10-31 3

futex(2) System Calls Manual futex(2)

lock(A);

}:

unlock(A);
If a waker thread used FUTEX_WAKE, then all waiters waiting on B would be woken up,
and they would all try to acquire lock A. However, waking all of the threads in this manner
would be pointless because all except one of the threads would immediately block on lock A
again. By contrast, a requeue operation wakes just one waiter and moves the other waiters to
lock A, and when the woken waiter unlocks A then the next waiter can proceed.

FUTEX_WAKE_ORP (since Linux 2.6.14)
This operation was added to support some user-space use cases where more than one futex
must be handled at the same time. The most notable example is the implementation of
pthread_cond_signal(3), which requires operations on two futexes, the one used to implement
the mutex and the one used in the implementation of the wait queue associated with the condi-
tion variable. FUTEX_WAKE_OP allows such cases to be implemented without leading to
high rates of contention and context switching.

The FUTEX_WAKE_OP operation is equivalent to executing the following code atomically
and totally ordered with respect to other futex operations on any of the two supplied futex
words:

uint32_t oldval = *(uint32_t *) uaddr2;
*(uint32_t *) uaddr2 = oldval op oparg;
futex(uaddr, FUTEX WAKE, val, 0, 0, 0);
if (oldval cmp cmparg)

futex(uaddr2, FUTEX_WAKE, val2, 0, 0, 0);

In other words, FUTEX_WAKE_OP does the following:

» saves the original value of the futex word at uaddr2 and performs an operation to modify
the value of the futex at uaddr2; this is an atomic read-modify-write memory access (i.e.,
using atomic machine instructions of the respective architecture)

» wakes up a maximum of val waiters on the futex for the futex word at uaddr; and

» dependent on the results of a test of the original value of the futex word at uaddr2, wakes
up a maximum of val2 waiters on the futex for the futex word at uaddr2.

The operation and comparison that are to be performed are encoded in the bits of the argument
val3. Pictorially, the encoding is:

R I o +
lop lcmp] oparg | cmparg |
R I o +

4 4 12 12 <== # of bits

Expressed in code, the encoding is:

#define FUTEX_OP(op, oparg, cmp, cmparg) \
(((op & OxF) << 28) | \
((cmp & OxF) << 24) | \
((oparg & OxFfF) << 12) | \
(cmparg & Oxfff))

In the above, op and cmp are each one of the codes listed below. The oparg and cmparg com-
ponents are literal numeric values, except as noted below.

The op component has one of the following values:

FUTEX_OP_SET 0 /* uaddr2 = oparg; */

FUTEX_OP_ADD 1 /* uaddr2 += oparg; */

FUTEX_OP_OR 2 /* uaddr2 |= oparg; */

FUTEX_OP_ANDN 3 /* uaddr2 &= -~oparg; */

FUTEX_OP_XOR 4 /* uaddr2 "= oparg; */
In addition, bitwise ORing the following value into op causes (1 << oparg) to be used as the
operand:

Linux man-pages 6.7 2023-10-31 4

futex(2) System Calls Manual futex(2)

FUTEX_OP_ARG_SHIFT 8 /* Use (1 << oparg) as operand */

The cmp field is one of the following:

FUTEX_OP_CMP_EQ 0 /* if (oldval == cmparg) wake */
FUTEX_OP_CMP_NE 1 /* if (oldval != cmparg) wake */
FUTEX_OP_CMP_LT 2 /* if (oldval < cmparg) wake */
FUTEX_OP_CMP_LE 3 /* it (oldval <= cmparg) wake */
FUTEX_OP_CMP_GT 4 /* it (oldval > cmparg) wake */
FUTEX_OP_CMP_GE 5 /* if (oldval >= cmparg) wake */

The return value of FUTEX_WAKE_OP is the sum of the number of waiters woken on the
futex uaddr plus the number of waiters woken on the futex uaddr2.

FUTEX_WAIT_BITSET (since Linux 2.6.25)
This operation is like FUTEX_WAIT except that val3 is used to provide a 32-bit bit mask to
the kernel. This bit mask, in which at least one bit must be set, is stored in the kernel-internal
state of the waiter. See the description of FUTEX_WAKE_BITSET for further details.

If timeout is not NULL, the structure it points to specifies an absolute timeout for the wait op-
eration. If timeout is NULL, the operation can block indefinitely.

The uaddr2 argument is ignored.

FUTEX_WAKE_BITSET (since Linux 2.6.25)

This operation is the same as FUTEX_WAKE except that the val3 argument is used to pro-
vide a 32-bit bit mask to the kernel. This bit mask, in which at least one bit must be set, is
used to select which waiters should be woken up. The selection is done by a bitwise AND of
the "wake" bit mask (i.e., the value in val3) and the bit mask which is stored in the kernel-in-
ternal state of the waiter (the "wait" bit mask that is set using FUTEX_WAIT_BITSET). All
of the waiters for which the result of the AND is nonzero are woken up; the remaining waiters
are left sleeping.

The effect of FUTEX_WAIT BITSET and FUTEX WAKE_BITSET is to allow selective
wake-ups among multiple waiters that are blocked on the same futex. However, note that, de-
pending on the use case, employing this bit-mask multiplexing feature on a futex can be less
efficient than simply using multiple futexes, because employing bit-mask multiplexing re-
quires the kernel to check all waiters on a futex, including those that are not interested in being
woken up (i.e., they do not have the relevant bit set in their "wait" bit mask).

The constant FUTEX_BITSET_MATCH_ANY, which corresponds to all 32 bits set in the
bit mask, can be used as the val3 argument for FUTEX WAIT_BITSET and FU-
TEX _WAKE_BITSET. Other than differences in the handling of the timeout argument, the
FUTEX_WAIT operation is equivalent to FUTEX_WAIT_BITSET with val3 specified as
FUTEX_BITSET_MATCH_ANY; that is, allow a wake-up by any waker. The FU-
TEX_WAKE operation is equivalent to FUTEX WAKE_BITSET with val3 specified as
FUTEX_BITSET_MATCH_ANY:; that is, wake up any waiter(s).

The uaddr2 and timeout arguments are ignored.

Priority-inheritance futexes
Linux supports priority-inheritance (P1) futexes in order to handle priority-inversion problems that can
be encountered with normal futex locks. Priority inversion is the problem that occurs when a high-pri-
ority task is blocked waiting to acquire a lock held by a low-priority task, while tasks at an intermediate
priority continuously preempt the low-priority task from the CPU. Consequently, the low-priority task
makes no progress toward releasing the lock, and the high-priority task remains blocked.

Priority inheritance is a mechanism for dealing with the priority-inversion problem. With this mecha-
nism, when a high-priority task becomes blocked by a lock held by a low-priority task, the priority of
the low-priority task is temporarily raised to that of the high-priority task, so that it is not preempted by
any intermediate level tasks, and can thus make progress toward releasing the lock. To be effective, pri-
ority inheritance must be transitive, meaning that if a high-priority task blocks on a lock held by a
lower-priority task that is itself blocked by a lock held by another intermediate-priority task (and so on,
for chains of arbitrary length), then both of those tasks (or more generally, all of the tasks in a lock
chain) have their priorities raised to be the same as the high-priority task.

Linux man-pages 6.7 2023-10-31 5

futex(2) System Calls Manual futex(2)

From a user-space perspective, what makes a futex Pl-aware is a policy agreement (described below)
between user space and the kernel about the value of the futex word, coupled with the use of the PI-fu-
tex operations described below. (Unlike the other futex operations described above, the PI-futex opera-
tions are designed for the implementation of very specific IPC mechanisms.)

The PI-futex operations described below differ from the other futex operations in that they impose pol-
icy on the use of the value of the futex word:

» Ifthe lock is not acquired, the futex word’s value shall be 0.

« If the lock is acquired, the futex word’s value shall be the thread ID (TID; see gettid(2)) of the own-
ing thread.

« If the lock is owned and there are threads contending for the lock, then the FUTEX_WAITERS bit
shall be set in the futex word’s value; in other words, this value is:

FUTEX_WAITERS | TID
(Note that is invalid for a PI futex word to have no owner and FUTEX_WAITERS set.)

With this policy in place, a user-space application can acquire an unacquired lock or release a lock us-
ing atomic instructions executed in user mode (e.g., a compare-and-swap operation such as cmpxchg on
the x86 architecture). Acquiring a lock simply consists of using compare-and-swap to atomically set
the futex word’s value to the caller’s TID if its previous value was 0. Releasing a lock requires using
compare-and-swap to set the futex word’s value to O if the previous value was the expected TID.

If a futex is already acquired (i.e., has a nonzero value), waiters must employ the FUTEX_LOCK_PI
or FUTEX_LOCK_PI2 operations to acquire the lock. If other threads are waiting for the lock, then
the FUTEX_WAITERS bit is set in the futex value; in this case, the lock owner must employ the FU-
TEX_UNLOCK_PI operation to release the lock.

In the cases where callers are forced into the kernel (i.e., required to perform a futex() call), they then
deal directly with a so-called RT-mutex, a kernel locking mechanism which implements the required
priority-inheritance semantics. After the RT-mutex is acquired, the futex value is updated accordingly,
before the calling thread returns to user space.

It is important to note that the kernel will update the futex word’s value prior to returning to user space.
(This prevents the possibility of the futex word’s value ending up in an invalid state, such as having an
owner but the value being 0, or having waiters but not having the FUTEX_WAITERS bit set.)

If a futex has an associated RT-mutex in the kernel (i.e., there are blocked waiters) and the owner of the
futex/RT-mutex dies unexpectedly, then the kernel cleans up the RT-mutex and hands it over to the next
waiter. This in turn requires that the user-space value is updated accordingly. To indicate that this is
required, the kernel sets the FUTEX_OWNER_DIED bit in the futex word along with the thread ID of
the new owner. User space can detect this situation via the presence of the FUTEX_OWNER_DIED
bit and is then responsible for cleaning up the stale state left over by the dead owner.

Pl futexes are operated on by specifying one of the values listed below in futex_op. Note that the Pl
futex operations must be used as paired operations and are subject to some additional requirements:

+ FUTEX_LOCK_PI, FUTEX_LOCK_PI2, and FUTEX_TRYLOCK_PI pair with FUTEX_UN-
LOCK_PI. FUTEX_UNLOCK_PI must be called only on a futex owned by the calling thread, as
defined by the value policy, otherwise the error EPERM results.

 FUTEX_WAIT_REQUEUE_PI pairs with FUTEX_CMP_REQUEUE_PI. This must be per-
formed from a non-PI futex to a distinct Pl futex (or the error EINVAL results). Additionally, val
(the number of waiters to be woken) must be 1 (or the error EINVAL results).

The PI futex operations are as follows:

FUTEX_LOCK_ PI (since Linux 2.6.18)
This operation is used after an attempt to acquire the lock via an atomic user-mode instruction
failed because the futex word has a nonzero value—specifically, because it contained the
(PID-namespace-specific) TID of the lock owner.

The operation checks the value of the futex word at the address uaddr. If the value is 0, then
the kernel tries to atomically set the futex value to the caller’s TID. If the futex word’s value
is nonzero, the kernel atomically sets the FUTEX_WAITERS bit, which signals the futex
owner that it cannot unlock the futex in user space atomically by setting the futex value to 0.

Linux man-pages 6.7 2023-10-31 6

futex(2) System Calls Manual futex(2)

After that, the kernel:
(1) Tries to find the thread which is associated with the owner TID.

(2) Creates or reuses kernel state on behalf of the owner. (If this is the first waiter, there is
no kernel state for this futex, so kernel state is created by locking the RT-mutex and the
futex owner is made the owner of the RT-mutex. If there are existing waiters, then the
existing state is reused.)

(3) Attaches the waiter to the futex (i.e., the waiter is enqueued on the RT-mutex waiter
list).

If more than one waiter exists, the enqueueing of the waiter is in descending priority order.
(For information on priority ordering, see the discussion of the SCHED_DEADLINE,
SCHED_FIFO, and SCHED_RR scheduling policies in sched(7).) The owner inherits either
the waiter’s CPU bandwidth (if the waiter is scheduled under the SCHED DEADLINE pol-
icy) or the waiter’s priority (if the waiter is scheduled under the SCHED RR or
SCHED_FIFO policy). This inheritance follows the lock chain in the case of nested locking
and performs deadlock detection.

The timeout argument provides a timeout for the lock attempt. If timeout is not NULL, the
structure it points to specifies an absolute timeout, measured against the CLOCK_REAL-
TIME clock. If timeout is NULL, the operation will block indefinitely.

The uaddr2, val, and val3 arguments are ignored.

FUTEX_LOCK_ PI2 (since Linux 5.14)
This operation is the same as FUTEX_LOCK _PI, except that the clock against which time-
out is measured is selectable. By default, the (absolute) timeout specified in timeout is mea-
sured against the CLOCK_MONOTONIC clock, but if the FUTEX_CLOCK_REALTIME
flag is specified in futex_op, then the timeout is measured against the CLOCK_REALTIME
clock.

FUTEX_TRYLOCK_PI (since Linux 2.6.18)
This operation tries to acquire the lock at uaddr. It is invoked when a user-space atomic ac-
quire did not succeed because the futex word was not 0.

Because the kernel has access to more state information than user space, acquisition of the
lock might succeed if performed by the kernel in cases where the futex word (i.e., the state in-
formation accessible to use-space) contains stale state (FUTEX WAITERS and/or FU-
TEX_OWNER_DIED). This can happen when the owner of the futex died. User space can-
not handle this condition in a race-free manner, but the kernel can fix this up and acquire the
futex.

The uaddr2, val, timeout, and val3 arguments are ignored.

FUTEX_UNLOCK_PI (since Linux 2.6.18)
This operation wakes the top priority waiter that is waiting in FUTEX_LOCK_PI or FU-
TEX_LOCK_PI2 on the futex address provided by the uaddr argument.

This is called when the user-space value at uaddr cannot be changed atomically from a TID
(of the owner) to 0.

The uaddr2, val, timeout, and val3 arguments are ignored.

FUTEX_CMP_REQUEUE_PI (since Linux 2.6.31)
This operation is a Pl-aware variant of FUTEX_CMP_REQUEUE. It requeues waiters that
are blocked via FUTEX WAIT_REQUEUE_PI on uaddr from a non-Pl source futex
(uaddr) to a PI target futex (uaddr2).

As with FUTEX_CMP_REQUEUE, this operation wakes up a maximum of val waiters that
are waiting on the futex at uaddr. However, for FUTEX_CMP_REQUEUE_PI, val is re-
quired to be 1 (since the main point is to avoid a thundering herd). The remaining waiters are
removed from the wait queue of the source futex at uaddr and added to the wait queue of the
target futex at uaddr2.

The val2 and val3 arguments serve the same purposes as for FUTEX_CMP_REQUEUE.

Linux man-pages 6.7 2023-10-31 7

futex(2) System Calls Manual futex(2)

FUTEX_WAIT_REQUEUE_PI (since Linux 2.6.31)
Wait on a non-PI futex at uaddr and potentially be requeued (via a FUTEX_CMP_RE-
QUEUE_PI operation in another task) onto a Pl futex at uaddr2. The wait operation on
uaddr is the same as for FUTEX_ WAIT.

The waiter can be removed from the wait on uaddr without requeueing on uaddr2 via a FU-
TEX_WAKE operation in another task. In this case, the FUTEX_WAIT_REQUEUE_PI
operation fails with the error EAGAIN.

If timeout is not NULL, the structure it points to specifies an absolute timeout for the wait op-
eration. If timeout is NULL, the operation can block indefinitely.

The val3 argument is ignored.

The FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI were added to
support a fairly specific use case: support for priority-inheritance-aware POSIX threads condi-
tion variables. The idea is that these operations should always be paired, in order to ensure
that user space and the kernel remain in sync. Thus, in the FUTEX_WAIT_REQUEUE_PI
operation, the user-space application pre-specifies the target of the requeue that takes place in
the FUTEX_CMP_REQUEUE_PI operation.

RETURN VALUE
In the event of an error (and assuming that futex() was invoked via syscall(2)), all operations return -1
and set errno to indicate the error.

The return value on success depends on the operation, as described in the following list:

FUTEX_WAIT
Returns 0O if the caller was woken up. Note that a wake-up can also be caused by common fu-
tex usage patterns in unrelated code that happened to have previously used the futex word’s
memory location (e.g., typical futex-based implementations of Pthreads mutexes can cause
this under some conditions). Therefore, callers should always conservatively assume that a re-
turn value of 0 can mean a spurious wake-up, and use the futex word’s value (i.e., the user-
space synchronization scheme) to decide whether to continue to block or not.

FUTEX_WAKE
Returns the number of waiters that were woken up.

FUTEX_FD
Returns the new file descriptor associated with the futex.

FUTEX_REQUEUE
Returns the number of waiters that were woken up.

FUTEX_CMP_REQUEUE
Returns the total number of waiters that were woken up or requeued to the futex for the futex
word at uaddr2. If this value is greater than val, then the difference is the number of waiters
requeued to the futex for the futex word at uaddr2.

FUTEX_WAKE_OP
Returns the total number of waiters that were woken up. This is the sum of the woken waiters
on the two futexes for the futex words at uaddr and uaddr2.

FUTEX_WAIT_BITSET
Returns 0 if the caller was woken up. See FUTEX_WAIT for how to interpret this correctly
in practice.

FUTEX_WAKE_BITSET
Returns the number of waiters that were woken up.

FUTEX_LOCK_PI
Returns 0 if the futex was successfully locked.

FUTEX_LOCK_PI2
Returns 0 if the futex was successfully locked.

FUTEX_TRYLOCK_PI
Returns 0 if the futex was successfully locked.

Linux man-pages 6.7 2023-10-31 8

futex(2) System Calls Manual futex(2)

FUTEX_UNLOCK_PI
Returns 0 if the futex was successfully unlocked.

FUTEX_CMP_REQUEUE_PI
Returns the total number of waiters that were woken up or requeued to the futex for the futex
word at uaddr2. If this value is greater than val, then difference is the number of waiters re-
queued to the futex for the futex word at uaddr2.

FUTEX_WAIT_REQUEUE_PI
Returns 0 if the caller was successfully requeued to the futex for the futex word at uaddr2.

ERRORS
EACCES
No read access to the memory of a futex word.

EAGAIN
(FUTEX_WAIT, FUTEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI) The value
pointed to by uaddr was not equal to the expected value val at the time of the call.

Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of which ap-
pear in different parts of the kernel futex code) have the same value.

EAGAIN
(FUTEX_CMP_REQUEUE, FUTEX_CMP_REQUEUE_PI) The value pointed to by
uaddr is not equal to the expected value val3.

EAGAIN
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FUTEX_CMP_RE-
QUEUE_PI) The futex owner thread ID of uaddr (for FUTEX_CMP_REQUEUE_PI:
uaddr?) is about to exit, but has not yet handled the internal state cleanup. Try again.

EDEADLK
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FUTEX_CMP_RE-
QUEUE_PI) The futex word at uaddr is already locked by the caller.

EDEADLK
(FUTEX_CMP_REQUEUE_PI) While requeueing a waiter to the Pl futex for the futex
word at uaddr2, the kernel detected a deadlock.

EFAULT
A required pointer argument (i.e., uaddr, uaddr2, or timeout) did not point to a valid user-
space address.

EINTR
A FUTEX_WAIT or FUTEX_WAIT_BITSET operation was interrupted by a signal (see
signal(7)). Before Linux 2.6.22, this error could also be returned for a spurious wakeup; since
Linux 2.6.22, this no longer happens.

EINVAL
The operation in futex_op is one of those that employs a timeout, but the supplied timeout ar-
gument was invalid (tv_sec was less than zero, or tv_nsec was not less than 1,000,000,000).

EINVAL
The operation specified in futex_op employs one or both of the pointers uaddr and uaddr2,
but one of these does not point to a valid object—that is, the address is not four-byte-aligned.

EINVAL
(FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET) The bit mask supplied in val3 is
zero.

EINVAL
(FUTEX_CMP_REQUEUE_PI) uaddr equals uaddr?2 (i.e., an attempt was made to requeue
to the same futex).

EINVAL
(FUTEX_FD) The signal number supplied in val is invalid.

Linux man-pages 6.7 2023-10-31 9

futex(2) System Calls Manual futex(2)

EINVAL
(FUTEX_WAKE, FUTEX_WAKE_OP, FUTEX_WAKE_BITSET, FUTEX_REQUEUE,
FUTEX_CMP_REQUEUE) The kernel detected an inconsistency between the user-space
state at uaddr and the kernel state—that is, it detected a waiter which waits in FU-
TEX_LOCK_PI or FUTEX_LOCK_PI2 on uaddr.

EINVAL
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_Pl, FUTEX_UN-
LOCK_PI) The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state. This indicates either state corruption or that the kernel found a waiter on
uaddr which is waiting via FUTEX_WAIT or FUTEX_WAIT_BITSET.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-
space state at uaddr2 and the kernel state; that is, the kernel detected a waiter which waits via
FUTEX_WAIT or FUTEX_WAIT_BITSET on uaddr2.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-
space state at uaddr and the kernel state; that is, the kernel detected a waiter which waits via
FUTEX_WAIT or FUTEX_WAIT_BITSET on uaddr.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-
space state at uaddr and the kernel state; that is, the kernel detected a waiter which waits on
uaddr via FUTEX_LOCK_PI or FUTEX_LOCK_PI2 (instead of FUTEX_WAIT_RE-
QUEUE_PI).

EINVAL
(FUTEX_CMP_REQUEUE_PI) An attempt was made to requeue a waiter to a futex other
than that specified by the matching FUTEX_WAIT_REQUEUE_PI call for that waiter.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The val argument is not 1.

EINVAL
Invalid argument.

ENFILE
(FUTEX_FD) The system-wide limit on the total number of open files has been reached.

ENOMEM
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FUTEX_CMP_RE-
QUEUE_PI) The kernel could not allocate memory to hold state information.

ENOSYS
Invalid operation specified in futex_op.

ENOSYS
The FUTEX_CLOCK_REALTIME option was specified in futex_op, but the accompanying
operation was neither FUTEX_WAIT, FUTEX WAIT_BITSET, FUTEX WAIT_RE-
QUEUE_PI, nor FUTEX_LOCK_PI2.

ENOSYS
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_Pl, FUTEX_UN-
LOCK_PI, FUTEX_CMP_REQUEUE_PI, FUTEX_WAIT_REQUEUE_PI) A run-time
check determined that the operation is not available. The PI-futex operations are not imple-
mented on all architectures and are not supported on some CPU variants.

EPERM
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FUTEX_CMP_RE-
QUEUE_PI) The caller is not allowed to attach itself to the futex at uaddr (for FU-
TEX_CMP_REQUEUE_PI: the futex at uaddr2). (This may be caused by a state corruption
in user space.)

Linux man-pages 6.7 2023-10-31 10

futex(2) System Calls Manual futex(2)

EPERM
(FUTEX_UNLOCK_PI) The caller does not own the lock represented by the futex word.

ESRCH
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK PI, FUTEX_CMP_RE-
QUEUE_PI) The thread ID in the futex word at uaddr does not exist.

ESRCH
(FUTEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr2 does not exist.

ETIMEDOUT
The operation in futex_op employed the timeout specified in timeout, and the timeout expired
before the operation completed.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

Initial futex support was merged in Linux 2.5.7 but with different semantics from what was described
above. A four-argument system call with the semantics described in this page was introduced in Linux
2.5.40. A fifth argument was added in Linux 2.5.70, and a sixth argument was added in Linux 2.6.7.

EXAMPLES
The program below demonstrates use of futexes in a program where a parent process and a child
process use a pair of futexes located inside a shared anonymous mapping to synchronize access to a
shared resource: the terminal. The two processes each write nloops (a command-line argument that de-
faults to 5 if omitted) messages to the terminal and employ a synchronization protocol that ensures that
they alternate in writing messages. Upon running this program we see output such as the following:

$./futex_demo
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)
Parent (18534)
Child (18535)

Program source

AR WWNNRERLPPFRLOO

/* futex_demo.c

Usage: futex_demo [nloops]
(Default: 5)

Demonstrate the use of futexes in a program where parent and child
use a pair of futexes located inside a shared anonymous mapping to
synchronize access to a shared resource: the terminal. The two
processes each write "num-loops® messages to the terminal and employ
a synchronization protocol that ensures that they alternate in
writing messages.

*/

#define _GNU_SOURCE

#include <err.h>

#include <errno.h>

#include <linux/futex._h>

#include <stdatomic.h>

#include <stdint.h>

#include <stdio.h>

Linux man-pages 6.7 2023-10-31 11

futex(2)

System Calls Manual futex(2)

#include <stdlib.h>
#include <sys/mman._h>
#include <sys/syscall_h>
#include <sys/time._h>
#include <sys/wait._h>
#include <unistd.h>

static uint32_t *futexl, *futex2, *iaddr;

static int
futex(uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{
return syscall(SYS_futex, uaddr, futex op, val,
timeout, uaddr2, val3);

}

/* Acquire the futex pointed to by "futexp®: wait for its value to
become 1, and then set the value to 0. */

static void
fwait(uint32_t *futexp)

{
long S;
const uint32_t one = 1;
/* atomic_compare_exchange_strong(ptr, oldval, newval)
atomically performs the equivalent of:
if (*ptr == *oldval)
*ptr = newval;
It returns true if the test yielded true and *ptr was updated. */
while (1) {
/* Is the futex available? */
it (atomic_compare_exchange_strong(futexp, &one, 0))
break; /* Yes */
/* Futex is not available; wait. */
s = futex(futexp, FUTEX WAIT, O, NULL, NULL, 0);
if (s == -1 && errno !'= EAGAIN)
err(EXIT_FAILURE, "futex-FUTEX_WAIT"™);
}
}

/* Release the futex pointed to by "futexp": if the futex currently
has the value 0, set its value to 1 and then wake any futex waiters,
so that if the peer is blocked in fwait(), it can proceed. */

static void
fpost(uint32_t *futexp)
{
long S;
const uint32_t zero = 0;

/* atomic_compare_exchange_strong() was described

Linux man-pages 6.7 2023-10-31 12

futex(2)

}

int

System Calls Manual futex(2)

in comments above. */

it (atomic_compare_exchange_strong(futexp, &zero, 1)) {
s = futex(futexp, FUTEX WAKE, 1, NULL, NULL, 0);
if (s = -1)
err(EXIT_FAILURE, "futex-FUTEX_WAKE™);

main(int argc, char *argv[])

{

pid_t childPid;
unsigned int nloops;

setbuf(stdout, NULL);
nloops = (argc > 1) ? atoi(argv[l]) : 5;

/* Create a shared anonymous mapping that will hold the futexes.
Since the futexes are being shared between processes, we
subsequently use the 'shared" futex operations (i.e., not the
ones suffixed " _PRIVATE"™). */

iaddr = mmap(NULL, sizeof(*iaddr) * 2, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);
if (iaddr == MAP_FAILED)
err(EXIT_FAILURE, "mmap'™);

futexl = &iaddr[0];

futex2 = &iaddr[1];

futexl = O; / State: unavailable */
futex2 = 1; / State: available */

/* Create a child process that inherits the shared anonymous
mapping. */

childPid = fork();
if (childPid == -1)
err(EXIT_FAILURE, "fork'™);

if (childPid == 0) { /* Child */
for (unsigned int j = 0; j < nloops; j++) {
fwait(futexl);
printf(’'Child (%jd) %u\n", (intmax_t) getpid(), j);
fpost(futex?);
}

exit(EXIT_SUCCESS);
}

/* Parent falls through to here. */

for (unsigned int j = 0; j < nloops; j++) {
fwait(futex?);
printf("Parent (%jd) %u\n', (intmax_t) getpid(), J);
fpost(futexl);

Linux man-pages 6.7 2023-10-31 13

futex(2)

}

System Calls Manual futex(2)

wait(NULL);

exit(EXIT_SUCCESS);

SEE ALSO
get_robust_list(2), restart_syscall(2), pthread_mutexattr_getprotocol(3), futex(7), sched(7)

The following kernel source files:

Documentation/pi—futex.txt
Documentation/futex—requeue—pi.txt
Documentation/locking/rt—mutex.txt
Documentation/locking/rt—mutex—design.txt

Documentation/robust—futex—ABI.txt

Franke, H., Russell, R., and Kirwood, M., 2002. Fuss, Futexes and Furwocks: Fast Userlevel Locking
in Linux (from proceedings of the Ottawa Linux Symposium 2002),

Hart, D., 2009. A futex overview and update,

Hart, D. and Guniguntala, D., 2009. Requeue-P1: Making glibc Condvars Pl-Aware (from proceedings
of the 2009 Real-Time Linux Workshop),

Drepper, U., 2011. Futexes Are Tricky,

Futex example library, futex—*.tar.bz2 at

Linux man-pages 6.7 2023-10-31 14

futimesat(2) System Calls Manual futimesat(2)

NAME

futimesat — change timestamps of a file relative to a directory file descriptor
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <fcntl.h> /* Definition of AT _* constants */

#include <sys/time.h>

[[deprecated]] int futimesat(int dirfd, const char * pathname,
const struct timeval times[2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

futimesat():
_GNU_SOURCE

DESCRIPTION
This system call is obsolete. Use utimensat(2) instead.

The futimesat() system call operates in exactly the same way as utimes(2), except for the differences
described in this manual page.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to
by the file descriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by utimes(2) for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted rela-
tive to the current working directory of the calling process (like utimes(2)).

If pathname is absolute, then dirfd is ignored. (See openat(2) for an explanation of why the dirfd ar-
gument is useful.)

RETURN VALUE
On success, futimesat() returns a 0. On error, —1 is returned and errno is set to indicate the error.

ERRORS

The same errors that occur for utimes(2) can also occur for futimesat(). The following additional er-
rors can occur for futimesat():

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.
ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a directory.
VERSIONS
glibc

If pathname is NULL, then the glibc futimesat() wrapper function updates the times for the file re-
ferred to by dirfd.

STANDARDS
None.

HISTORY
Linux 2.6.16, glibc 2.4.

It was implemented from a specification that was proposed for POSIX.1, but that specification was re-
placed by the one for utimensat(2).

A similar system call exists on Solaris.

NOTES
SEE ALSO
stat(2), utimensat(2), utimes(2), futimes(3), path_resolution(7)

Linux man-pages 6.7 2023-10-31 1

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

NAME
get_kernel_syms - retrieve exported kernel and module symbols

SYNOPSIS
#include <linux/module.h>

[[deprecated]] int get_kernel_syms(struct kernel_sym *table);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

If table is NULL, get_kernel_syms() returns the number of symbols available for query. Otherwise, it
fills in a table of structures:

struct kernel_sym {
unsigned long value;
char name[60] ;

}:
The symbols are interspersed with magic symbols of the form #module-name with the kernel having an

empty name. The value associated with a symbol of this form is the address at which the module is
loaded.

The symbols exported from each module follow their magic module tag and the modules are returned
in the reverse of the order in which they were loaded.

RETURN VALUE
On success, returns the number of symbols copied to table. On error, =1 is returned and errno is set to
indicate the error.

ERRORS
There is only one possible error return:

ENOSYS
get_kernel_syms() is not supported in this version of the kernel.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc headers, but,
through a quirk of history, glibc versions before glibc 2.23 did export an ABI for this system call.
Therefore, in order to employ this system call, it was sufficient to manually declare the interface in your
code; alternatively, you could invoke the system call using syscall(2).

BUGS
There is no way to indicate the size of the buffer allocated for table. If symbols have been added to the
kernel since the program queried for the symbol table size, memory will be corrupted.

The length of exported symbol names is limited to 59 characters.

Because of these limitations, this system call is deprecated in favor of query_module(2) (which is itself
nowadays deprecated in favor of other interfaces described on its manual page).

SEE ALSO
create_module(2), delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.7 2023-10-31 1

get_mempolicy(2) System Calls Manual get_mempolicy(2)

NAME

get_mempolicy - retrieve NUMA memory policy for a thread
LIBRARY

NUMA (Non-Uniform Memory Access) policy library (libnuma, —Inuma)
SYNOPSIS

#include <numaif.h>

long get_mempolicy(int *mode,
unsigned long nodemask[(.maxnode + ULONG_WIDTH - 1)
/ULONG_WIDTH],
unsigned long maxnode, void *addr,
unsigned long flags);

DESCRIPTION
get_mempolicy() retrieves the NUMA policy of the calling thread or of a memory address, depending
on the setting of flags.

A NUMA machine has different memory controllers with different distances to specific CPUs. The
memory policy defines from which node memory is allocated for the thread.

If flags is specified as 0, then information about the calling thread’s default policy (as set by set_mem-
policy(2)) is returned, in the buffers pointed to by mode and nodemask. The value returned in these ar-
guments may be used to restore the thread’s policy to its state at the time of the call to get_mempol-
icy() using set_mempolicy(2). When flags is 0, addr must be specified as NULL.

If flags specifies MPOL_F_MEMS_ALLOWED (available since Linux 2.6.24), the mode argument
is ignored and the set of nodes (memories) that the thread is allowed to specify in subsequent calls to
mbind(2) or set_mempolicy(2) (in the absence of any mode flags) is returned in nodemask. It is not
permitted to combine MPOL_F MEMS _ALLOWED with either MPOL_F ADDR or
MPOL_F_NODE.

If flags specifies MPOL_F_ADDR, then information is returned about the policy governing the mem-
ory address given in addr. This policy may be different from the thread’s default policy if mbind(2) or
one of the helper functions described in numa(3) has been used to establish a policy for the memory
range containing addr.

If the mode argument is not NULL, then get_mempolicy() will store the policy mode and any optional
mode flags of the requested NUMA policy in the location pointed to by this argument. If nodemask is
not NULL, then the nodemask associated with the policy will be stored in the location pointed to by
this argument. maxnode specifies the number of node IDs that can be stored into nodemask—that is,
the maximum node ID plus one. The value specified by maxnode is always rounded to a multiple of
sizeof(unsigned long)*8.

If flags specifies both MPOL_F_NODE and MPOL_F_ADDR, get_mempolicy() will return the
node ID of the node on which the address addr is allocated into the location pointed to by mode. If no
page has yet been allocated for the specified address, get_mempolicy() will allocate a page as if the
thread had performed a read (load) access to that address, and return the ID of the node where that page
was allocated.

If flags specifies MPOL_F_NODE, but not MPOL_F_ADDR, and the thread’s current policy is
MPOL_INTERLEAVE, then get_mempolicy() will return in the location pointed to by a non-NULL
mode argument, the node ID of the next node that will be used for interleaving of internal kernel pages
allocated on behalf of the thread. These allocations include pages for memory-mapped files in process
memory ranges mapped using the mmap(2) call with the MAP_PRIVATE flag for read accesses, and
in memory ranges mapped with the MAP_SHARED flag for all accesses.

Other flag values are reserved.
For an overview of the possible policies see set_mempolicy(2).

RETURN VALUE
On success, get_mempolicy() returns 0; on error, —1 is returned and errno is set to indicate the error.

ERRORS

Linux man-pages 6.7 2023-10-31 1

get_mempolicy(2)

System Calls Manual get_mempolicy(2)

EFAULT

Part of all of the memory range specified by nodemask and maxnode points outside your ac-
cessible address space.

EINVAL

STANDARDS
Linux.

HISTORY

The value specified by maxnode is less than the number of node IDs supported by the system.
Or flags specified values other than MPOL_F_NODE or MPOL_F_ADDR,; or flags speci-
fied MPOL_F_ADDR and addr is NULL, or flags did not specify MPOL_F_ADDR and
addr is not NULL. Or, flags specified MPOL_F_NODE but not MPOL_F_ADDR and the
current thread policy is not MPOL_INTERLEAVE. Or, flags specified
MPOL_F_MEMS_ALLOWED with either MPOL_F_ADDR or MPOL_F_NODE. (And
there are other EINVAL cases.)

Linux 2.6.7.

NOTES

For information on library support, see numa(7).

SEE ALSO

getcpu(2), mbind(2), mmap(2), set_mempolicy(2), numa(3), numa(7), numactl(8)

Linux man-pages 6.7 2023-10-31 2

get_robust_list(2) System Calls Manual get_robust_list(2)

NAME

get_robust_list, set_robust_list — get/set list of robust futexes
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/futex.h> /* Definition of struct robust_list_head */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_get_robust_list, int pid,

struct robust_list_head **head_ptr, size_t *len_ptr);
long syscall(SYS_set_robust_list,

struct robust_list_head *head, size_t len);

Note: glibc provides no wrappers for these system calls, necessitating the use of syscall(2).

DESCRIPTION
These system calls deal with per-thread robust futex lists. These lists are managed in user space: the
kernel knows only about the location of the head of the list. A thread can inform the kernel of the loca-
tion of its robust futex list using set_robust_list(). The address of a thread’s robust futex list can be ob-
tained using get_robust_list().

The purpose of the robust futex list is to ensure that if a thread accidentally fails to unlock a futex be-
fore terminating or calling execve(2), another thread that is waiting on that futex is notified that the for-
mer owner of the futex has died. This notification consists of two pieces: the FU-
TEX_OWNER_DIED bit is set in the futex word, and the kernel performs a futex(2) FUTEX_WAKE
operation on one of the threads waiting on the futex.

The get_robust_list() system call returns the head of the robust futex list of the thread whose thread ID
is specified in pid. If pid is O, the head of the list for the calling thread is returned. The list head is
stored in the location pointed to by head_ptr. The size of the object pointed to by **head_ptr is stored
in len_ptr.

Permission to employ get robust list() is governed by a ptrace access mode
PTRACE_MODE_READ_REALCREDS check; see ptrace(2).

The set_robust_list() system call requests the kernel to record the head of the list of robust futexes
owned by the calling thread. The head argument is the list head to record. The len argument should be
sizeof(*head).

RETURN VALUE
The set_robust_list() and get_robust_list() system calls return zero when the operation is successful,
an error code otherwise.

ERRORS
The set_robust_list() system call can fail with the following error:
EINVAL
len does not equal sizeof(struct robust_list_head).
The get_robust_list() system call can fail with the following errors:

EFAULT
The head of the robust futex list can’t be stored at the location head.

EPERM
The calling process does not have permission to see the robust futex list of the thread with the
thread 1D pid, and does not have the CAP_SYS_PTRACE capability.

ESRCH
No thread with the thread ID pid could be found.

VERSIONS
These system calls were added in Linux 2.6.17.

Linux man-pages 6.7 2023-10-31 1

get_robust_list(2) System Calls Manual get_robust_list(2)

NOTES
These system calls are not needed by normal applications.

A thread can have only one robust futex list; therefore applications that wish to use this functionality
should use the robust mutexes provided by glibc.

In the initial implementation, a thread waiting on a futex was notified that the owner had died only if
the owner terminated. Starting with Linux 2.6.28, notification was extended to include the case where
the owner performs an execve(2).

The thread IDs mentioned in the main text are kernel thread 1Ds of the kind returned by clone(2) and
gettid(2).

SEE ALSO
futex(2), pthread_mutexattr_setrobust(3)

Documentation/robust—futexes.txt and Documentation/robust—futex—ABL.txt in the Linux kernel
source tree

Linux man-pages 6.7 2023-10-31 2

getcpu(2) System Calls Manual getcpu(2)

NAME
getcpu — determine CPU and NUMA node on which the calling thread is running

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#define _ GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int getcpu(unsigned int *_Nullable cpu, unsigned int *_Nullable node);

DESCRIPTION
The getcpu() system call identifies the processor and node on which the calling thread or process is
currently running and writes them into the integers pointed to by the cpu and node arguments. The
processor is a unique small integer identifying a CPU. The node is a unique small identifier identifying
a NUMA node. When either cpu or node is NULL nothing is written to the respective pointer.

The information placed in cpu is guaranteed to be current only at the time of the call: unless the CPU
affinity has been fixed using sched_setaffinity(2), the kernel might change the CPU at any time. (Nor-
mally this does not happen because the scheduler tries to minimize movements between CPUs to keep
caches hot, but it is possible.) The caller must allow for the possibility that the information returned in
cpu and node is no longer current by the time the call returns.

RETURN VALUE
On success, 0 is returned. On error, —1 is returned, and errno is set to indicate the error.
ERRORS
EFAULT
Arguments point outside the calling process’s address space.

STANDARDS
Linux.

HISTORY
Linux 2.6.19 (x86-64 and i386), glibc 2.29.

C library/kernel differences
The kernel system call has a third argument:

int getcpu(unsigned int *cpu, unsigned int *node,
struct getcpu_cache *tcache);

The tcache argument is unused since Linux 2.6.24, and (when invoking the system call directly) should
be specified as NULL, unless portability to Linux 2.6.23 or earlier is required.

In Linux 2.6.23 and earlier, if the tcache argument was non-NULL, then it specified a pointer to a
caller-allocated buffer in thread-local storage that was used to provide a caching mechanism for
getcpu(). Use of the cache could speed getcpu() calls, at the cost that there was a very small chance
that the returned information would be out of date. The caching mechanism was considered to cause
problems when migrating threads between CPUs, and so the argument is now ignored.

NOTES
Linux makes a best effort to make this call as fast as possible. (On some architectures, this is done via
an implementation in the vdso(7).) The intention of getcpu() is to allow programs to make optimiza-
tions with per-CPU data or for NUMA optimization.

SEE ALSO
mbind(2), sched_setaffinity(2), set_mempolicy(2), sched_getcpu(3), cpuset(7), vdso(7)

Linux man-pages 6.7 2023-10-31 1

getdents(2) System Calls Manual getdents(2)

NAME

getdents, getdents64 — get directory entries
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_getdents, unsigned int fd, struct linux_dirent *dirp,
unsigned int count);

#define _ GNU_SOURCE /* See feature_test_macros(7) */
#include <dirent.h>

ssize_t getdents64(int fd, void dirp[.count], size_t count);
Note: glibc provides no wrapper for getdents(), necessitating the use of syscall(2).
Note: There is no definition of struct linux_dirent in glibc; see NOTES.

DESCRIPTION
These are not the interfaces you are interested in. Look at readdir(3) for the POSIX-conforming C li-
brary interface. This page documents the bare kernel system call interfaces.

getdents()
The system call getdents() reads several linux_dirent structures from the directory referred to by the
open file descriptor fd into the buffer pointed to by dirp. The argument count specifies the size of that
buffer.

The linux_dirent structure is declared as follows:

struct linux_dirent {

unsigned long d_ino; /* Inode number */

unsigned long d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this linux_dirent */
char d_name[]; /* Filename (null-terminated) */

/* length is actually (d_reclen - 2 -
offsetof(struct linux_dirent, d_name)) */

/*
char pad; // Zero padding byte
char d_type; // File type (only since Linux
// 2.6.4); offset is (d_reclen - 1)
*/

}

d_ino is an inode number. d_off is a filesystem-specific value with no specific meaning to user space,
though on older filesystems it used to be the distance from the start of the directory to the start of the
next linux_dirent; see readdir(3). d_reclen is the size of this entire linux_dirent. d_name is a null-ter-
minated filename.

d_type is a byte at the end of the structure that indicates the file type. It contains one of the following
values (defined in <dirent.h>):

DT BLK This is a block device.

DT _CHR This is a character device.

DT _DIR This is a directory.

DT_FIFO This is a named pipe (FIFO).
DT_LNK This is a symbolic link.
DT_REG This is a regular file.

DT _SOCK Thisisa UNIX domain socket.

Linux man-pages 6.7 2024-02-25 1

getdents(2) System Calls Manual getdents(2)

DT_UNKNOWN
The file type is unknown.

The d_type field is implemented since Linux 2.6.4. It occupies a space that was previously a zero-filled
padding byte in the linux_dirent structure. Thus, on kernels up to and including Linux 2.6.3, attempt-
ing to access this field always provides the value 0 (DT_UNKNOWN).

Currently, only some filesystems (among them: Btrfs, ext2, ext3, and ext4) have full support for return-
ing the file type in d_type. All applications must properly handle a return of DT_UNKNOWN.

getdents64()
The original Linux getdents() system call did not handle large filesystems and large file offsets. Con-
sequently, Linux 2.4 added getdents64(), with wider types for the d_ino and d_off fields. In addition,
getdents64() supports an explicit d_type field.

The getdents64() system call is like getdents(), except that its second argument is a pointer to a buffer
containing structures of the following type:
struct linux_dirent64 {
ino64 t d ino; /* 64-bit inode number */
off64_t d_off; /* Not an offset; see getdents() */
unsigned short d_reclen; /* Size of this dirent */
unsigned char d_type; /* File type */
char d_name[]; /* Filename (null-terminated) */
}:
RETURN VALUE
On success, the number of bytes read is returned. On end of directory, 0 is returned. On error, =1 is re-
turned, and errno is set to indicate the error.

ERRORS
EBADF
Invalid file descriptor fd.

EFAULT
Argument points outside the calling process’s address space.

EINVAL
Result buffer is too small.

ENOENT
No such directory.

ENOTDIR
File descriptor does not refer to a directory.

STANDARDS
None.

HISTORY
SVr4.

getdents64()
glibc 2.30.

NOTES
glibc does not provide a wrapper for getdents(); call getdents() using syscall(2). In that case you will
need to define the linux_dirent or linux_dirent64 structure yourself.

Probably, you want to use readdir(3) instead of these system calls.
These calls supersede readdir(2).

EXAMPLES
The program below demonstrates the use of getdents(). The following output shows an example of
what we see when running this program on an ext2 directory:

$./a.out /testfs/
——————————————— nread=120 —-—————————————-
inode# file type d_reclen d_off d_name

Linux man-pages 6.7 2024-02-25 2

getdents(2)

System Calls Manual

2 directory 16 12
2 directory 16 24 .
11 directory 24 44 lost+found
12 regular 16 56 a
228929 directory 16 68 sub
16353 directory 16 80 sub2
130817 directory 16 4096 sub3

Program source

#define _GNU_SOURCE

#include
#include
#include
#include
#include
#include
#include
#include

<dirent.h>
<err.h>
<fcntl.h>
<stdint.h>
<stdio.h>
<stdlib.h>
<sys/syscall_h>
<unistd.h>

/* Defines DT_* constants */

struct linux_dirent {

X

unsigned long d_ino;

off t d _off;
unsigned short d_reclen;
char d_name[];

#define BUF_SIZE 1024

int

main(int argc, char *argv[])

{

Linux man-pages 6.7

int fd;

char d_type;

char buf[BUF_SIZE];
long nread;

struct linux _dirent *d;

fd = open(argc > 1 ? argv[1l] : ".", O_RDONLY | O_DIRECTORY)
if (fd == -1)

err(EXIT_FAILURE, "open');
for (G3) {

nread = syscall(SYS_getdents, fd, buf, BUF_SIZE);

if (nread == -1)

err(EXIT_FAILURE, "getdents™);

if (nread == 0)
break;

nread=%Ild
printf('inode# file type d_reclen
for (size_t bpos 0; bpos < nread;) {
d = (struct linux_dirent *) (buf + bpos);
printf(C"%8Ilu ", d->d_ino);
d_type = *(buf + bpos + d->d_reclen - 1);

printf("
d_off

printf("'%-10s ", (d_type == DT_REG) ? ‘“regular' :
(d_type == DT_DIR) ? “directory"
(d_type == DT_FIFO) ? "FIFO" :
2024-02-25

getdents(2)

\n"", nread);
d_name\n'™);

getdents(2) System Calls Manual getdents(2)

(d_type == DT_SOCK) ? "socket" :
(d_type == DT_LNK) ? ‘“symlink" :
(d_type == DT_BLK) ? "block dev" :
(d_type == DT_CHR) ? ™"char dev'"™ : "???');
printf('%4d %10jd %s\n", d->d_reclen,
(intmax_t) d->d_off, d->d_name);
bpos += d->d_reclen;

}

exit(EXIT_SUCCESS);
}

SEE ALSO
readdir(2), readdir(3), inode(7)

Linux man-pages 6.7 2024-02-25 4

getdomainname(2) System Calls Manual getdomainname(2)

NAME

getdomainname, setdomainname — get/set NIS domain name
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int getdomainname(char *name, size_t len);
int setdomainname(const char *name, size_t len);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdomainname(), setdomainname():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
DESCRIPTION
These functions are used to access or to change the NIS domain name of the host system. More pre-
cisely, they operate on the NIS domain name associated with the calling process’s UTS namespace.

setdomainname() sets the domain name to the value given in the character array name. The len argu-
ment specifies the number of bytes in name. (Thus, name does not require a terminating null byte.)

getdomainname() returns the null-terminated domain name in the character array name, which has a
length of len bytes. If the null-terminated domain name requires more than len bytes, getdomain-
name() returns the first len bytes (glibc) or gives an error (libc).

RETURN VALUE

On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.
ERRORS

setdomainname() can fail with the following errors:

EFAULT
name pointed outside of user address space.

EINVAL
len was negative or too large.
EPERM
The caller did not have the CAP_SYS_ADMIN capability in the user namespace associated
with its UTS namespace (see hamespaces(7)).
getdomainname() can fail with the following errors:
EINVAL
For getdomainname() under libc: name is NULL or name is longer than len bytes.
VERSIONS

On most Linux architectures (including x86), there is no getdomainname() system call; instead, glibc
implements getdomainname() as a library function that returns a copy of the domainname field re-
turned from a call to uname(2).

STANDARDS
None.
HISTORY

Since Linux 1.0, the limit on the length of a domain name, including the terminating null byte, is 64
bytes. In older kernels, it was 8 bytes.

SEE ALSO
gethostname(2), sethostname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.7 2023-10-31 1

getdomainname(2) System Calls Manual getdomainname(2)

Linux man-pages 6.7 2023-10-31 2

getgid(2) System Calls Manual getgid(2)

NAME

getgid, getegid — get group identity
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
gid_t getgid(void);
gid_t getegid(void);
DESCRIPTION
getgid() returns the real group ID of the calling process.
getegid() returns the effective group ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

VERSIONS
On Alpha, instead of a pair of getgid() and getegid() system calls, a single getxgid() system call is pro-
vided, which returns a pair of real and effective GIDs. The glibc getgid() and getegid() wrapper func-
tions transparently deal with this. See syscall(2) for details regarding register mapping.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

The original Linux getgid() and getegid() system calls supported only 16-bit group IDs. Subsequently,
Linux 2.4 added getgid32() and getegid32(), supporting 32-bit IDs. The glibc getgid() and getegid()
wrapper functions transparently deal with the variations across kernel versions.

SEE ALSO
getresgid(2), setgid(2), setregid(2), credentials(7)

Linux man-pages 6.7 2023-10-31 1

getgroups(2) System Calls Manual getgroups(2)

NAME

getgroups, setgroups — get/set list of supplementary group IDs
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int getgroups(int size, gid_t list[]);
#include <grp.h>
int setgroups(size_t size, const gid_t *_Nullable list);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setgroups():
Since glibc 2.19:
_DEFAULT_SOURCE
glibc 2.19 and earlier:
_BSD_SOURCE
DESCRIPTION
getgroups() returns the supplementary group IDs of the calling process in list. The argument size
should be set to the maximum number of items that can be stored in the buffer pointed to by list. If the
calling process is a member of more than size supplementary groups, then an error results.

It is unspecified whether the effective group ID of the calling process is included in the returned list.
(Thus, an application should also call getegid(2) and add or remove the resulting value.)

If size is zero, list is not modified, but the total number of supplementary group IDs for the process is
returned. This allows the caller to determine the size of a dynamically allocated list to be used in a fur-
ther call to getgroups().

setgroups() sets the supplementary group IDs for the calling process. Appropriate privileges are re-
quired (see the description of the EPERM error, below). The size argument specifies the number of
supplementary group IDs in the buffer pointed to by list. A process can drop all of its supplementary
groups with the call:

setgroups(0, NULL);

RETURN VALUE
On success, getgroups() returns the number of supplementary group IDs. On error, —1 is returned, and
errno is set to indicate the error.

On success, setgroups() returns 0. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
list has an invalid address.

getgroups() can additionally fail with the following error:
EINVAL

size is less than the number of supplementary group IDs, but is not zero.
setgroups() can additionally fail with the following errors:

EINVAL
size is greater than NGROUPS_MAX (32 before Linux 2.6.4; 65536 since Linux 2.6.4).

ENOMEM
Out of memory.

EPERM
The calling process has insufficient privilege (the caller does not have the CAP_SETGID ca-
pability in the user namespace in which it resides).

EPERM (since Linux 3.19)
The use of setgroups() is denied in this user namespace. See the description of /proc/ pid/set-
groups in user_namespaces(7).

Linux man-pages 6.7 2023-10-31 1

getgroups(2) System Calls Manual getgroups(2)

VERSIONS
C library/kernel differences
At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX requires that all
threads in a process share the same credentials. The NPTL threading implementation handles the
POSIX requirements by providing wrapper functions for the various system calls that change process
UIDs and GIDs. These wrapper functions (including the one for setgroups()) employ a signal-based
technique to ensure that when one thread changes credentials, all of the other threads in the process
also change their credentials. For details, see nptl(7).

STANDARDS
getgroups()
POSIX.1-2008.

setgroups()
None.
HISTORY
getgroups()
SVr4, 4.3BSD, POSIX.1-2001.
setgroups()
SVr4, 4.3BSD. Since setgroups() requires privilege, it is not covered by POSIX.1.
The original Linux getgroups() system call supported only 16-bit group IDs. Subsequently, Linux 2.4
added getgroups32(), supporting 32-bit IDs. The glibc getgroups() wrapper function transparently
deals with the variation across kernel versions.
NOTES
A process can have up to NGROUPS_MAX supplementary group IDs in addition to the effective

group ID. The constant NGROUPS_MAX is defined in <limits.h>. The set of supplementary group
IDs is inherited from the parent process, and preserved across an execve(2).

The maximum number of supplementary group 1Ds can be found at run time using sysconf(3):
long ngroups_max;
ngroups_max = sysconf(_SC_NGROUPS_MAX);
The maximum return value of getgroups() cannot be larger than one more than this value. Since Linux

2.6.4, the maximum number of supplementary group IDs is also exposed via the Linux-specific read-
only file, /proc/sys/kernel/ngroups_max.

SEE ALSO
getgid(2), setgid(2), getgrouplist(3), group_member(3), initgroups(3), capabilities(7), credentials(7)

Linux man-pages 6.7 2023-10-31 2

gethostname(2) System Calls Manual gethostname(2)

NAME

gethostname, sethostname — get/set hostname
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

int gethostname(char *name, size_t len);
int sethostname(const char *name, size_t len);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostname():
_XOPEN_SOURCE >=500 || _POSIX_C_SOURCE >=200112L
| /* glibc 2.19 and earlier */ _BSD_SOURCE

sethostname():
Since glibc 2.21:
_DEFAULT_SOURCE
In glibc 2.19 and 2.20:
_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:
_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
These system calls are used to access or to change the system hostname. More precisely, they operate
on the hostname associated with the calling process’s UTS namespace.

sethostname() sets the hostname to the value given in the character array name. The len argument
specifies the number of bytes in name. (Thus, name does not require a terminating null byte.)

gethostname() returns the null-terminated hostname in the character array name, which has a length of
len bytes. If the null-terminated hostname is too large to fit, then the name is truncated, and no error is
returned (but see NOTES below). POSIX.1 says that if such truncation occurs, then it is unspecified
whether the returned buffer includes a terminating null byte.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
name is an invalid address.
EINVAL
len is negative or, for sethostname(), len is larger than the maximum allowed size.
ENAMETOOLONG

(glibc gethostname()) len is smaller than the actual size. (Before glibc 2.1, glibc uses EIN-
VAL for this case.)

EPERM
For sethostname(), the caller did not have the CAP_SYS ADMIN capability in the user
namespace associated with its UTS namespace (see hamespaces(7)).

VERSIONS
SUSV2 guarantees that "Host names are limited to 255 bytes”. POSIX.1 guarantees that "Host hames
(not including the terminating null byte) are limited to HOST_NAME_MAX bytes”. On Linux,
HOST_NAME_MAX is defined with the value 64, which has been the limit since Linux 1.0 (earlier
kernels imposed a limit of 8 bytes).

C library/kernel differences
The GNU C library does not employ the gethostname() system call; instead, it implements gethost-
name() as a library function that calls uname(2) and copies up to len bytes from the returned nodename
field into name. Having performed the copy, the function then checks if the length of the nodename
was greater than or equal to len, and if it is, then the function returns —1 with errno set to ENAME-
TOOLONG,; in this case, a terminating null byte is not included in the returned name.

Linux man-pages 6.7 2023-10-31 1

gethostname(2) System Calls Manual gethostname(2)

STANDARDS
gethostname()
POSIX.1-2008.

sethostname()
None.

HISTORY
SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD). POSIX.1-2001 and POSIX.1-2008 specify
gethostname() but not sethostname().

Versions of glibc before glibc 2.2 handle the case where the length of the nodename was greater than or
equal to len differently: nothing is copied into name and the function returns —1 with errno set to
ENAMETOOLONG.

SEE ALSO
hostname(1), getdomainname(2), setdomainname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.7 2023-10-31 2

getitimer (2) System Calls Manual getitimer (2)

NAME

getitimer, setitimer — get or set value of an interval timer
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *restrict new_value,
struct itimerval *_Nullable restrict old_value);

DESCRIPTION
These system calls provide access to interval timers, that is, timers that initially expire at some point in
the future, and (optionally) at regular intervals after that. When a timer expires, a signal is generated
for the calling process, and the timer is reset to the specified interval (if the interval is nonzero).

Three types of timers—specified via the which argument—are provided, each of which counts against a
different clock and generates a different signal on timer expiration:
ITIMER_REAL
This timer counts down in real (i.e., wall clock) time. At each expiration, a SIGALRM signal
is generated.
ITIMER_VIRTUAL
This timer counts down against the user-mode CPU time consumed by the process. (The mea-
surement includes CPU time consumed by all threads in the process.) At each expiration, a
SIGVTALRM signal is generated.
ITIMER_PROF
This timer counts down against the total (i.e., both user and system) CPU time consumed by

the process. (The measurement includes CPU time consumed by all threads in the process.)
At each expiration, a SIGPROF signal is generated.

In conjunction with ITIMER_VIRTUAL, this timer can be used to profile user and system
CPU time consumed by the process.

A process has only one of each of the three types of timers.
Timer values are defined by the following structures:

struct itimerval {
struct timeval it_interval; /* Interval for periodic timer */

struct timeval it_value; /* Time until next expiration */
}:
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
}:
getitimer ()

The function getitimer() places the current value of the timer specified by which in the buffer pointed
to by curr_value.

The it_value substructure is populated with the amount of time remaining until the next expiration of
the specified timer. This value changes as the timer counts down, and will be reset to it_interval when
the timer expires. If both fields of it_value are zero, then this timer is currently disarmed (inactive).

The it_interval substructure is populated with the timer interval. If both fields of it_interval are zero,
then this is a single-shot timer (i.e., it expires just once).

setitimer()
The function setitimer() arms or disarms the timer specified by which, by setting the timer to the value
specified by new_value. If old_value is non-NULL, the buffer it points to is used to return the previous
value of the timer (i.e., the same information that is returned by getitimer())

If either field in new_value.it_value is nonzero, then the timer is armed to initially expire at the

Linux man-pages 6.7 2023-10-31 1

getitimer (2) System Calls Manual getitimer (2)

specified time. If both fields in new_value.it_value are zero, then the timer is disarmed.

The new_value.it_interval field specifies the new interval for the timer; if both of its subfields are zero,
the timer is single-shot.

RETURN VALUE

On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
new_value, old_value, or curr_value is not valid a pointer.
EINVAL
which is not one of ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF; or (since
Linux 2.6.22) one of the tv_usec fields in the structure pointed to by new_value contains a
value outside the range [0, 999999].
VERSIONS

The standards are silent on the meaning of the call:
setitimer(which, NULL, &old_value);

Many systems (Solaris, the BSDs, and perhaps others) treat this as equivalent to:
getitimer(which, &old_value);

In Linux, this is treated as being equivalent to a call in which the new_value fields are zero; that is, the
timer is disabled. Don’t use this Linux misfeature: it is nonportable and unnecessary.

STANDARDS

POSIX.1-2008.

HISTORY

POSIX.1-2001, SVr4, 4.4BSD (this call first appeared in 4.2BSD). POSIX.1-2008 marks getitimer()
and setitimer() obsolete, recommending the use of the POSIX timers API (timer_gettime(2),
timer_settime(2), etc.) instead.

NOTES

BUGS

Timers will never expire before the requested time, but may expire some (short) time afterward, which
depends on the system timer resolution and on the system load; see time(7). (But see BUGS below.) If
the timer expires while the process is active (always true for ITIMER_VIRTUAL), the signal will be
delivered immediately when generated.

A child created via fork(2) does not inherit its parent’s interval timers. Interval timers are preserved
across an execve(2).

POSIX.1 leaves the interaction between setitimer() and the three interfaces alarm(2), sleep(3), and
usleep(3) unspecified.

The generation and delivery of a signal are distinct, and only one instance of each of the signals listed
above may be pending for a process. Under very heavy loading, an ITIMER_REAL timer may expire
before the signal from a previous expiration has been delivered. The second signal in such an event
will be lost.

Before Linux 2.6.16, timer values are represented in jiffies. If a request is made set a timer with a value
whose jiffies representation exceeds MAX_SEC_IN_JIFFIES (defined in include/linux/jiffies.h), then
the timer is silently truncated to this ceiling value. On Linux/i386 (where, since Linux 2.6.13, the de-
fault jiffy is 0.004 seconds), this means that the ceiling value for a timer is approximately 99.42 days.
Since Linux 2.6.16, the kernel uses a different internal representation for times, and this ceiling is re-
moved.

On certain systems (including i386), Linux kernels before Linux 2.6.12 have a bug which will produce
premature timer expirations of up to one jiffy under some circumstances. This bug is fixed in Linux
2.6.12.

POSIX.1-2001 says that setitimer() should fail if a tv_usec value is specified that is outside of the
range [0, 999999]. However, up to and including Linux 2.6.21, Linux does not give an error, but in-
stead silently adjusts the corresponding seconds value for the timer. From Linux 2.6.22 onward, this

Linux man-pages 6.7 2023-10-31 2

getitimer (2) System Calls Manual getitimer (2)

nonconformance has been repaired: an improper tv_usec value results in an EINVAL error.

SEE ALSO
gettimeofday(2), sigaction(2), signal(2), timer_create(2), timerfd_create(2), time(7)

Linux man-pages 6.7 2023-10-31 3

getpagesize(2) System Calls Manual getpagesize(2)

NAME

getpagesize — get memory page size
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
int getpagesize(void);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpagesize():
Since glibc 2.20:
_DEFAULT_SOURCE || ! (_ POSIX_C_SOURCE >=200112L)
glibc 2.12 to glibc 2.19:
_BSD_SOURCE || ! (_POSIX_C_SOURCE >=200112L)
Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The function getpagesize() returns the number of bytes in a memory page, where "page" is a fixed-
length block, the unit for memory allocation and file mapping performed by mmap(2).

STANDARDS
None.

HISTORY
This call first appeared in 4.2BSD. SVr4, 4.4BSD, SUSv2. In SUSV2 the getpagesize() call is labeled
LEGACY, and in POSIX.1-2001 it has been dropped; HP-UX does not have this call.

NOTES
Portable applications should employ sysconf(_SC_PAGESIZE) instead of getpagesize():

#include <unistd.h>
long sz = sysconf(_SC_PAGESIZE);

(Most systems allow the synonym _SC_PAGE_SIZE for _SC_PAGESIZE.)

Whether getpagesize() is present as a Linux system call depends on the architecture. If it is, it returns
the kernel symbol PAGE_SIZE, whose value depends on the architecture and machine model. Gener-
ally, one uses binaries that are dependent on the architecture but not on the machine model, in order to
have a single binary distribution per architecture. This means that a user program should not find
PAGE_SIZE at compile time from a header file, but use an actual system call, at least for those archi-
tectures (like sun4) where this dependency exists. Here glibc 2.0 fails because its getpagesize() returns
a statically derived value, and does not use a system call. Things are OK in glibc 2.1.

SEE ALSO
mmap(2), sysconf(3)

Linux man-pages 6.7 2023-10-31 1

getpeername(2) System Calls Manual getpeername(2)

NAME

getpeername — get name of connected peer socket

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION

getpeername() returns the address of the peer connected to the socket sockfd, in the buffer pointed to
by addr. The addrlen argument should be initialized to indicate the amount of space pointed to by
addr. On return it contains the actual size of the name returned (in bytes). The name is truncated if the
buffer provided is too small.

The returned address is truncated if the buffer provided is too small; in this case, addrlen will return a
value greater than was supplied to the call.

RETURN VALUE

On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EBADF
The argument sockfd is not a valid file descriptor.
EFAULT
The addr argument points to memory not in a valid part of the process address space.
EINVAL
addrlen is invalid (e.g., is negative).
ENOBUFS
Insufficient resources were available in the system to perform the operation.
ENOTCONN
The socket is not connected.
ENOTSOCK
The file descriptor sockfd does not refer to a socket.
STANDARDS
POSIX.1-2008.
HISTORY

POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

NOTES

For stream sockets, once a connect(2) has been performed, either socket can call getpeername() to ob-
tain the address of the peer socket. On the other hand, datagram sockets are connectionless. Calling
connect(2) on a datagram socket merely sets the peer address for outgoing datagrams sent with write(2)
or recv(2). The caller of connect(2) can use getpeername() to obtain the peer address that it earlier set
for the socket. However, the peer socket is unaware of this information, and calling getpeername() on
the peer socket will return no useful information (unless a connect(2) call was also executed on the
peer). Note also that the receiver of a datagram can obtain the address of the sender when using
recvfrom(2).

SEE ALSO

accept(2), bind(2), getsockname(2), ip(7), socket(7), unix(7)

Linux man-pages 6.7 2023-10-31 1

getpid(2) System Calls Manual getpid(2)

NAME

getpid, getppid — get process identification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

DESCRIPTION
getpid() returns the process ID (PID) of the calling process. (This is often used by routines that gener-
ate unique temporary filenames.)

getppid() returns the process ID of the parent of the calling process. This will be either the ID of the
process that created this process using fork(), or, if that process has already terminated, the 1D of the
process to which this process has been reparented (either init(1) or a "subreaper™ process defined via
the prctl(2) PR_SET_CHILD_SUBREAPER operation).

ERRORS
These functions are always successful.

VERSIONS
On Alpha, instead of a pair of getpid() and getppid() system calls, a single getxpid() system call is
provided, which returns a pair of PID and parent PID. The glibc getpid() and getppid() wrapper func-
tions transparently deal with this. See syscall(2) for details regarding register mapping.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD, SVr4.

C library/kernel differences

From glibc 2.3.4 up to and including glibc 2.24, the glibc wrapper function for getpid() cached PIDs,
with the goal of avoiding additional system calls when a process calls getpid() repeatedly. Normally
this caching was invisible, but its correct operation relied on support in the wrapper functions for
fork(2), vfork(2), and clone(2): if an application bypassed the glibc wrappers for these system calls by
using syscall(2), then a call to getpid() in the child would return the wrong value (to be precise: it
would return the PID of the parent process). In addition, there were cases where getpid() could return
the wrong value even when invoking clone(2) via the glibc wrapper function. (For a discussion of one
such case, see BUGS in clone(2).) Furthermore, the complexity of the caching code had been the
source of a few bugs within glibc over the years.

Because of the aforementioned problems, since glibc 2.25, the PID cache is removed: calls to getpid()
always invoke the actual system call, rather than returning a cached value.

NOTES
If the caller’s parent is in a different PID namespace (see pid_namespaces(7)), getppid() returns 0.

From a kernel perspective, the PID (which is shared by all of the threads in a multithreaded process) is
sometimes also known as the thread group ID (TGID). This contrasts with the kernel thread ID (TID),
which is unique for each thread. For further details, see gettid(2) and the discussion of the
CLONE_THREAD flag in clone(2).

SEE ALSO
clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3), tmpfile(3), tmpnam(3), creden-
tials(7), pid_namespaces(7)

Linux man-pages 6.7 2023-10-31 1

getpriority(2) System Calls Manual getpriority(2)

NAME

getpriority, setpriority — get/set program scheduling priority
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who is ob-
tained with the getpriority() call and set with the setpriority() call. The process attribute dealt with by
these system calls is the same attribute (also known as the "nice" value) that is dealt with by nice(2).

The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted
relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the call-
ing process, the process group of the calling process, or the real user ID of the calling process.

The prio argument is a value in the range —20 to 19 (but see NOTES below), with —20 being the high-
est priority and 19 being the lowest priority. Attempts to set a priority outside this range are silently
clamped to the range. The default priority is 0; lower values give a process a higher scheduling prior-
ity.

The getpriority() call returns the highest priority (lowest numerical value) enjoyed by any of the speci-
fied processes. The setpriority() call sets the priorities of all of the specified processes to the specified
value.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher priority). However,
since Linux 2.6.12, an unprivileged process can decrease the nice value of a target process that has a
suitable RLIMIT_NICE soft limit; see getrlimit(2) for details.

RETURN VALUE
On success, getpriority() returns the calling thread’s nice value, which may be a negative number. On
error, it returns —1 and sets errno to indicate the error.

Since a successful call to getpriority() can legitimately return the value -1, it is necessary to clear er-
rno prior to the call, then check errno afterward to determine if -1 is an error or a legitimate value.

setpriority() returns 0 on success. On failure, it returns —1 and sets errno to indicate the error.

ERRORS
EACCES
The caller attempted to set a lower nice value (i.e., a higher process priority), but did not have
the required privilege (on Linux: did not have the CAP_SYS_NICE capability).

EINVAL
which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

EPERM
A process was located, but its effective user ID did not match either the effective or the real
user ID of the caller, and was not privileged (on Linux: did not have the CAP_SYS_NICE ca-
pability). But see NOTES below.

ESRCH
No process was located using the which and who values specified.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD).

NOTES
For further details on the nice value, see sched(7).

Note: the addition of the "autogroup™ feature in Linux 2.6.38 means that the nice value no longer has

Linux man-pages 6.7 2023-10-31 1

getpriority(2) System Calls Manual getpriority(2)

its traditional effect in many circumstances. For details, see sched(7).
A child created by fork(2) inherits its parent’s nice value. The nice value is preserved across execve(2).

The details on the condition for EPERM depend on the system. The above description is what
POSIX.1-2001 says, and seems to be followed on all System V-like systems. Linux kernels before
Linux 2.6.12 required the real or effective user ID of the caller to match the real user of the process
who (instead of its effective user ID). Linux 2.6.12 and later require the effective user ID of the caller
to match the real or effective user ID of the process who. All BSD-like systems (SunOS 4.1.3, Ultrix
4.2, 4.3BSD, FreeBSD 4.3, OpenBSD-2.5, ...) behave in the same manner as Linux 2.6.12 and later.

C library/kernel differences
The getpriority system call returns nice values translated to the range 40..1, since a negative return
value would be interpreted as an error. The glibc wrapper function for getpriority() translates the
value back according to the formula unice = 20 — knice (thus, the 40..1 range returned by the kernel
corresponds to the range —20..19 as seen by user space).

BUGS
According to POSIX, the nice value is a per-process setting. However, under the current Linux/NPTL
implementation of POSIX threads, the nice value is a per-thread attribute: different threads in the same
process can have different nice values. Portable applications should avoid relying on the Linux behav-
ior, which may be made standards conformant in the future.

SEE ALSO
nice(1), renice(1), fork(2), capabilities(7), sched(7)

Documentation/scheduler/sched—nice—design.txt in the Linux kernel source tree (since Linux 2.6.23)

Linux man-pages 6.7 2023-10-31 2

getrandom(2) System Calls Manual getrandom(2)

NAME

getrandom — obtain a series of random bytes

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/random.h>

ssize_t getrandom(void buf [.buflen], size_t buflen, unsigned int flags);

DESCRIPTION

The getrandom() system call fills the buffer pointed to by buf with up to buflen random bytes. These
bytes can be used to seed user-space random number generators or for cryptographic purposes.

By default, getrandom() draws entropy from the urandom source (i.e., the same source as the
/dev/urandom device). This behavior can be changed via the flags argument.

If the urandom source has been initialized, reads of up to 256 bytes will always return as many bytes as
requested and will not be interrupted by signals. No such guarantees apply for larger buffer sizes. For
example, if the call is interrupted by a signal handler, it may return a partially filled buffer, or fail with
the error EINTR.

If the urandom source has not yet been initialized, then getrandom() will block, unless GRND_NON-
BLOCK is specified in flags.

The flags argument is a bit mask that can contain zero or more of the following values ORed together:

GRND_RANDOM
If this bit is set, then random bytes are drawn from the random source (i.e., the same source as
the /dev/random device) instead of the urandom source. The random source is limited based
on the entropy that can be obtained from environmental noise. If the number of available
bytes in the random source is less than requested in buflen, the call returns just the available
random bytes. If no random bytes are available, the behavior depends on the presence of
GRND_NONBLOCK in the flags argument.

GRND_NONBLOCK
By default, when reading from the random source, getrandom() blocks if no random bytes
are available, and when reading from the urandom source, it blocks if the entropy pool has not
yet been initialized. If the GRND_NONBLOCK flag is set, then getrandom() does not
block in these cases, but instead immediately returns —1 with errno set to EAGAIN.

RETURN VALUE

On success, getrandom() returns the number of bytes that were copied to the buffer buf. This may be
less than the number of bytes requested via buflen if either GRND_RANDOM was specified in flags
and insufficient entropy was present in the random source or the system call was interrupted by a sig-
nal.

On error, =1 is returned, and errno is set to indicate the error.

ERRORS

EAGAIN
The requested entropy was not available, and getrandom() would have blocked if the
GRND_NONBLOCK flag was not set.

EFAULT
The address referred to by buf is outside the accessible address space.

EINTR
The call was interrupted by a signal handler; see the description of how interrupted read(2)
calls on "slow" devices are handled with and without the SA_RESTART flag in the signal(7)
man page.

EINVAL
An invalid flag was specified in flags.

ENOSYS

The glibc wrapper function for getrandom() determined that the underlying kernel does not
implement this system call.

Linux man-pages 6.7 2023-10-31 1

getrandom(2) System Calls Manual getrandom(2)

STANDARDS

Linux.

HISTORY

Linux 3.17, glibc 2.25.

NOTES

For an overview and comparison of the various interfaces that can be used to obtain randomness, see
random(7).

Unlike /dev/random and /dev/urandom, getrandom() does not involve the use of pathnames or file de-
scriptors. Thus, getrandom() can be useful in cases where chroot(2) makes /dev pathnames invisible,
and where an application (e.g., a daemon during start-up) closes a file descriptor for one of these files
that was opened by a library.

Maximum number of bytes returned

As of Linux 3.19 the following limits apply:

* When reading from the urandom source, a maximum of 32Mi-1 bytes is returned by a single call to
getrandom() on systems where int has a size of 32 bits.

* When reading from the random source, a maximum of 512 bytes is returned.

Interruption by a signal handler

BUGS

When reading from the urandom source (GRND_RANDOM is not set), getrandom() will block until
the entropy pool has been initialized (unless the GRND_NONBLOCK flag was specified). If a re-
quest is made to read a large number of bytes (more than 256), getrandom() will block until those
bytes have been generated and transferred from kernel memory to buf. When reading from the random
source (GRND_RANDOM is set), getrandom() will block until some random bytes become available
(unless the GRND_NONBLOCK flag was specified).

The behavior when a call to getrandom() that is blocked while reading from the urandom source is in-
terrupted by a signal handler depends on the initialization state of the entropy buffer and on the request
size, buflen. If the entropy is not yet initialized, then the call fails with the EINTR error. If the entropy
pool has been initialized and the request size is large (buflen > 256), the call either succeeds, returning
a partially filled buffer, or fails with the error EINTR. If the entropy pool has been initialized and the
request size is small (buflen <= 256), then getrandom() will not fail with EINTR. Instead, it will re-
turn all of the bytes that have been requested.

When reading from the random source, blocking requests of any size can be interrupted by a signal
handler (the call fails with the error EINTR).

Using getrandom() to read small buffers (<= 256 bytes) from the urandom source is the preferred
mode of usage.

The special treatment of small values of buflen was designed for compatibility with OpenBSD’s geten-
tropy(3), which is nowadays supported by glibc.

The user of getrandom() must always check the return value, to determine whether either an error oc-
curred or fewer bytes than requested were returned. In the case where GRND_RANDOM is not speci-
fied and buflen is less than or equal to 256, a return of fewer bytes than requested should never happen,
but the careful programmer will check for this anyway!

As of Linux 3.19, the following bug exists:

» Depending on CPU load, getrandom() does not react to interrupts before reading all bytes re-
quested.

SEE ALSO

getentropy(3), random(4), urandom(4), random(7), signal(7)

Linux man-pages 6.7 2023-10-31 2

getresuid(2) System Calls Manual getresuid(2)

NAME

getresuid, getresgid — get real, effective, and saved user/group IDs
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE [* See feature_test_macros(7) */
#include <unistd.h>

int getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);
int getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);
DESCRIPTION
getresuid() returns the real UID, the effective UID, and the saved set-user-1D of the calling process, in

the arguments ruid, euid, and suid, respectively. getresgid() performs the analogous task for the
process’s group IDs.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
One of the arguments specified an address outside the calling program’s address space.

STANDARDS
None. These calls also appear on HP-UX and some of the BSDs.

HISTORY
Linux 2.1.44, glibc 2.3.2.

The original Linux getresuid() and getresgid() system calls supported only 16-bit user and group IDs.
Subsequently, Linux 2.4 added getresuid32() and getresgid32(), supporting 32-bit IDs. The glibc ge-
tresuid() and getresgid() wrapper functions transparently deal with the variations across kernel ver-
sions.

SEE ALSO
getuid(2), setresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.7 2023-10-31 1

getrlimit(2) System Calls Manual getrlimit(2)

NAME

getrlimit, setrlimit, prlimit — get/set resource limits
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlim);
int setrlimit(int resource, const struct rlimit *rlim);

int prlimit(pid_t pid, int resource,
const struct rlimit *_Nullable new_limit,
struct rlimit *_Nullable old_limit);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

prlimit():
_GNU_SOURCE

DESCRIPTION
The getrlimit() and setrlimit() system calls get and set resource limits. Each resource has an associ-
ated soft and hard limit, as defined by the rlimit structure:

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */
}:
The soft limit is the value that the kernel enforces for the corresponding resource. The hard limit acts
as a ceiling for the soft limit: an unprivileged process may set only its soft limit to a value in the range
from 0 up to the hard limit, and (irreversibly) lower its hard limit. A privileged process (under Linux:
one with the CAP_SYS_RESOURCE capability in the initial user namespace) may make arbitrary
changes to either limit value.

The value RLIM_INFINITY denotes no limit on a resource (both in the structure returned by getr-
limit() and in the structure passed to setrlimit())

The resource argument must be one of:

RLIMIT_AS
This is the maximum size of the process’s virtual memory (address space). The limit is speci-
fied in bytes, and is rounded down to the system page size. This limit affects calls to brk(2),
mmap(2), and mremap(2), which fail with the error ENOMEM upon exceeding this limit. In
addition, automatic stack expansion fails (and generates a SIGSEGV that kills the process if
no alternate stack has been made available via sigaltstack(2)). Since the value is a long, on
machines with a 32-bit long either this limit is at most 2 GiB, or this resource is unlimited.

RLIMIT_CORE
This is the maximum size of a core file (see core(5)) in bytes that the process may dump.
When 0 no core dump files are created. When nonzero, larger dumps are truncated to this
size.

RLIMIT_CPU
This is a limit, in seconds, on the amount of CPU time that the process can consume. When
the process reaches the soft limit, it is sent a SIGXCPU signal. The default action for this sig-
nal is to terminate the process. However, the signal can be caught, and the handler can return
control to the main program. If the process continues to consume CPU time, it will be sent
SIGXCPU once per second until the hard limit is reached, at which time it is sent SIGKILL.
(This latter point describes Linux behavior. Implementations vary in how they treat processes
which continue to consume CPU time after reaching the soft limit. Portable applications that
need to catch this signal should perform an orderly termination upon first receipt of SIGX-
CPU.))

RLIMIT_DATA
This is the maximum size of the process’s data segment (initialized data, uninitialized data,
and heap). The limit is specified in bytes, and is rounded down to the system page size. This

Linux man-pages 6.7 2024-02-25 1

getrlimit(2) System Calls Manual getrlimit(2)

limit affects calls to brk(2), sbrk(2), and (since Linux 4.7) mmap(2), which fail with the error
ENOMEM upon encountering the soft limit of this resource.

RLIMIT_FSIZE
This is the maximum size in bytes of files that the process may create. Attempts to extend a
file beyond this limit result in delivery of a SIGXFSZ signal. By default, this signal termi-
nates a process, but a process can catch this signal instead, in which case the relevant system
call (e.g., write(2), truncate(2)) fails with the error EFBIG.

RLIMIT_LOCKS (Linux 2.4.0 to Linux 2.4.24)
This is a limit on the combined number of flock(2) locks and fcntl(2) leases that this process
may establish.

RLIMIT_MEMLOCK

This is the maximum number of bytes of memory that may be locked into RAM. This limit is
in effect rounded down to the nearest multiple of the system page size. This limit affects
mlock(2), mlockall(2), and the mmap(2) MAP_LOCKED operation. Since Linux 2.6.9, it
also affects the shmctl(2) SHM_LOCK operation, where it sets a maximum on the total bytes
in shared memory segments (see shmget(2)) that may be locked by the real user ID of the call-
ing process. The shmctl(2) SHM_LOCK locks are accounted for separately from the per-
process memory locks established by mlock(2), mlockall(2), and mmap(2) MAP_LOCKED; a
process can lock bytes up to this limit in each of these two categories.

Before Linux 2.6.9, this limit controlled the amount of memory that could be locked by a priv-
ileged process. Since Linux 2.6.9, no limits are placed on the amount of memory that a privi-
leged process may lock, and this limit instead governs the amount of memory that an unprivi-
leged process may lock.

RLIMIT_MSGQUEUE (since Linux 2.6.8)
This is a limit on the number of bytes that can be allocated for POSIX message queues for the
real user ID of the calling process. This limit is enforced for mg_open(3). Each message
queue that the user creates counts (until it is removed) against this limit according to the for-
mula:

Since Linux 3.5:

bytes = attr.mg_maxmsg * sizeof(struct msg_msg) +
MIN(attr.mg_maxmsg, MQ_PRIO_MAX) *
sizeof(struct posix_msg_tree_nhode)+
/* For overhead */
attr.mg_maxmsg * attr.mg_msgsize;
/* For message data */

Linux 3.4 and earlier:

bytes = attr.mgq_maxmsg * sizeof(struct msg _msg *) +
/* For overhead */
attr.mg_maxmsg * attr.mg_msgsize;
/* For message data */

where attr is the mq_attr structure specified as the fourth argument to mq_open(3), and the
msg_msg and posix_msg_tree_node structures are kernel-internal structures.

The "overhead" addend in the formula accounts for overhead bytes required by the implemen-
tation and ensures that the user cannot create an unlimited number of zero-length messages
(such messages nevertheless each consume some system memory for bookkeeping overhead).

RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)

This specifies a ceiling to which the process’s nice value can be raised using setpriority(2) or
nice(2). The actual ceiling for the nice value is calculated as 20 — rlim_cur. The useful range
for this limit is thus from 1 (corresponding to a nice value of 19) to 40 (corresponding to a
nice value of —20). This unusual choice of range was necessary because negative numbers
cannot be specified as resource limit values, since they typically have special meanings. For
example, RLIM_INFINITY typically is the same as —1. For more detail on the nice value,
see sched(7).

Linux man-pages 6.7 2024-02-25 2

getrlimit(2) System Calls Manual getrlimit(2)

RLIMIT_NOFILE
This specifies a value one greater than the maximum file descriptor number that can be opened
by this process. Attempts (open(2), pipe(2), dup(2), etc.) to exceed this limit yield the error
EMFILE. (Historically, this limit was named RLIMIT_OFILE on BSD.)

Since Linux 4.5, this limit also defines the maximum number of file descriptors that an unpriv-
ileged process (one without the CAP_SYS_RESOURCE capability) may have "in flight" to
other processes, by being passed across UNIX domain sockets. This limit applies to the
sendmsg(2) system call. For further details, see unix(7).

RLIMIT_NPROC
This is a limit on the number of extant process (or, more precisely on Linux, threads) for the
real user ID of the calling process. So long as the current number of processes belonging to
this process’s real user ID is greater than or equal to this limit, fork(2) fails with the error EA-
GAIN.

The RLIMIT_NPROC limit is not enforced for processes that have either the
CAP_SYS_ADMIN or the CAP_SYS_RESOURCE capability, or run with real user 1D 0.

RLIMIT_RSS
This is a limit (in bytes) on the process’s resident set (the number of virtual pages resident in
RAM). This limit has effect only in Linux 2.4.x, x < 30, and there affects only calls to mad-
vise(2) specifying MADV_WILLNEED.

RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)
This specifies a ceiling on the real-time priority that may be set for this process using
sched_setscheduler(2) and sched_setparam(2).

For further details on real-time scheduling policies, see sched(7)

RLIMIT_RTTIME (since Linux 2.6.25)
This is a limit (in microseconds) on the amount of CPU time that a process scheduled under a
real-time scheduling policy may consume without making a blocking system call. For the pur-
pose of this limit, each time a process makes a blocking system call, the count of its consumed
CPU time is reset to zero. The CPU time count is not reset if the process continues trying to
use the CPU but is preempted, its time slice expires, or it calls sched_yield(2).

Upon reaching the soft limit, the process is sent a SIGXCPU signal. If the process catches or
ignores this signal and continues consuming CPU time, then SIGXCPU will be generated
once each second until the hard limit is reached, at which point the process is sent a SIGKILL
signal.

The intended use of this limit is to stop a runaway real-time process from locking up the sys-
tem.

For further details on real-time scheduling policies, see sched(7)

RLIMIT_SIGPENDING (since Linux 2.6.8)
This is a limit on the number of signals that may be queued for the real user 1D of the calling
process. Both standard and real-time signals are counted for the purpose of checking this
limit. However, the limit is enforced only for sigqueue(3); it is always possible to use kill(2)
to queue one instance of any of the signals that are not already queued to the process.

RLIMIT_STACK
This is the maximum size of the process stack, in bytes. Upon reaching this limit, a
SIGSEGV signal is generated. To handle this signal, a process must employ an alternate sig-
nal stack (sigaltstack(2)).

Since Linux 2.6.23, this limit also determines the amount of space used for the process’s com-
mand-line arguments and environment variables; for details, see execve(2).

prlimit()
The Linux-specific prlimit() system call combines and extends the functionality of setrlimit() and
getrlimit(). It can be used to both set and get the resource limits of an arbitrary process.

The resource argument has the same meaning as for setrlimit() and getrlimit().

If the new_limit argument is not NULL, then the rlimit structure to which it points is used to set new

Linux man-pages 6.7 2024-02-25 3

getrlimit(2) System Calls Manual getrlimit(2)

values for the soft and hard limits for resource. If the old_limit argument is not NULL, then a success-
ful call to prlimit() places the previous soft and hard limits for resource in the rlimit structure pointed
to by old_limit.

The pid argument specifies the 1D of the process on which the call is to operate. If pid is 0, then the
call applies to the calling process. To set or get the resources of a process other than itself, the caller
must have the CAP_SYS_RESOURCE capability in the user namespace of the process whose re-
source limits are being changed, or the real, effective, and saved set user 1Ds of the target process must
match the real user 1D of the caller and the real, effective, and saved set group IDs of the target process
must match the real group 1D of the caller.

RETURN VALUE
On success, these system calls return 0. On error, —1 is returned, and errno is set to indicate the error.
ERRORS
EFAULT
A pointer argument points to a location outside the accessible address space.
EINVAL
The value specified in resource is not valid; or, for setrlimit() or prlimit(): rlim—>rlim_cur
was greater than rlim—>rlim_max.
EPERM
An unprivileged process tried to raise the hard limit; the CAP_SYS RESOURCE capability
is required to do this.
EPERM
The caller tried to increase the hard RLIMIT_NOFILE limit above the maximum defined by
Iproc/sys/fs/nr_open (see proc(5))
EPERM
(prlimit()) The calling process did not have permission to set limits for the process specified
by pid.
ESRCH
Could not find a process with the ID specified in pid.
ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
getrlimit(), setrlimit(), prlimit() Thread safety | MT-Safe
STANDARDS
getrlimit()
setrlimit()
POSIX.1-2008.
prlimit()
Linux.

RLIMIT_MEMLOCK and RLIMIT_NPROC derive from BSD and are not specified in POSIX.1;
they are present on the BSDs and Linux, but on few other implementations. RLIMIT_RSS derives
from BSD and is not specified in POSIX.1; it is nevertheless present on most implementations.
RLIMIT_MSGQUEUE, RLIMIT_NICE, RLIMIT_RTPRIO, RLIMIT_RTTIME, and
RLIMIT_SIGPENDING are Linux-specific.

HISTORY
getrlimit()
setrlimit()
POSIX.1-2001, SVr4, 4.3BSD.

prlimit()
Linux 2.6.36, glibc 2.13.

NOTES

A child process created via fork(2) inherits its parent’s resource limits. Resource limits are preserved
across execve(2).

Linux man-pages 6.7 2024-02-25 4

getrlimit(2) System Calls Manual getrlimit(2)

Resource limits are per-process attributes that are shared by all of the threads in a process.

Lowering the soft limit for a resource below the process’s current consumption of that resource will
succeed (but will prevent the process from further increasing its consumption of the resource).

One can set the resource limits of the shell using the built-in ulimit command (limit in csh(1)). The
shell’s resource limits are inherited by the processes that it creates to execute commands.

Since Linux 2.6.24, the resource limits of any process can be inspected via /proc/pid/limits; see
proc(5).

Ancient systems provided a vlimit() function with a similar purpose to setrlimit(). For backward com-
patibility, glibc also provides vlimit(). All new applications should be written using setrlimit().

C library/kernel ABI differences

BUGS

Since glibc 2.13, the glibc getrlimit() and setrlimit() wrapper functions no longer invoke the corre-
sponding system calls, but instead employ prlimit(), for the reasons described in BUGS.

The name of the glibc wrapper function is prlimit(); the underlying system call is prlimit64().

In older Linux kernels, the SIGXCPU and SIGKILL signals delivered when a process encountered the
soft and hard RLIMIT_CPU limits were delivered one (CPU) second later than they should have been.
This was fixed in Linux 2.6.8.

In Linux 2.6.x kernels before Linux 2.6.17, a RLIMIT_CPU limit of 0 is wrongly treated as "no limit"
(like RLIM_INFINITY). Since Linux 2.6.17, setting a limit of 0 does have an effect, but is actually
treated as a limit of 1 second.

A kernel bug means that RLIMIT_RTPRIO does not work in Linux 2.6.12; the problem is fixed in
Linux 2.6.13.

In Linux 2.6.12, there was an off-by-one mismatch between the priority ranges returned by getprior-
ity(2) and RLIMIT_NICE. This had the effect that the actual ceiling for the nice value was calculated
as 19 — rlim_cur. This was fixed in Linux 2.6.13.

Since Linux 2.6.12, if a process reaches its soft RLIMIT_CPU limit and has a handler installed for
SIGXCPU, then, in addition to invoking the signal handler, the kernel increases the soft limit by one
second. This behavior repeats if the process continues to consume CPU time, until the hard limit is
reached, at which point the process is killed. Other implementations do not change the RLIMIT_CPU
soft limit in this manner, and the Linux behavior is probably not standards conformant; portable appli-
cations should avoid relying on this Linux-specific behavior. The Linux-specific RLIMIT_RTTIME
limit exhibits the same behavior when the soft limit is encountered.

Kernels before Linux 2.4.22 did not diagnose the error EINVAL for setrlimit() when rlim—>rlim_cur
was greater than rlim—>rlim_max.

Linux doesn’t return an error when an attempt to set RLIMIT_CPU has failed, for compatibility rea-
sons.

Representation of "'large™ resource limit values on 32-bit platforms

The glibc getrlimit() and setrlimit() wrapper functions use a 64-bit rlim_t data type, even on 32-bit
platforms. However, the rlim_t data type used in the getrlimit() and setrlimit() system calls is a
(32-bit) unsigned long. Furthermore, in Linux, the kernel represents resource limits on 32-bit plat-
forms as unsigned long. However, a 32-bit data type is not wide enough. The most pertinent limit here
is RLIMIT_FSIZE, which specifies the maximum size to which a file can grow: to be useful, this limit
must be represented using a type that is as wide as the type used to represent file offsets—that is, as
wide as a 64-bit off_t (assuming a program compiled with _FILE_OFFSET_BITS=64).

To work around this kernel limitation, if a program tried to set a resource limit to a value larger than
can be represented in a 32-bit unsigned long, then the glibc setrlimit() wrapper function silently con-
verted the limit value to RLIM_INFINITY. In other words, the requested resource limit setting was
silently ignored.

Since glibc 2.13, glibc works around the limitations of the getrlimit() and setrlimit() system calls by
implementing setrlimit() and getrlimit() as wrapper functions that call prlimit().

Linux man-pages 6.7 2024-02-25 5

getrlimit(2)

System Calls Manual getrlimit(2)

EXAMPLES
The program below demonstrates the use of prlimit().

#define GNU_SOURCE

#define FILE_OFFSET BITS 64
#include <err.h>

#include <stdint._h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/resource.h>
#include <time.h>

int

main(int argc, char *argv[])

{

}

SEE ALSO

pid_t pid;
struct rlimit old, new;
struct rlimit *newp;

it (1(argc == 2 || argc == 4)) {
fprintf(stderr, "Usage: %s <pid> [<new-soft-limit>
"<new-hard-limit>]\n", argv[0]);
exit(EXIT_FAILURE);

}
pid = atoi(argv[1l]); /* PID of target process */
newp = NULL;
if (argc == 4) {
new.rlim_cur = atoi(argv[2]);
new.rlim_max = atoi(argv[3]);

newp = &new;

}

/* Set CPU time limit of target process; retrieve and display
previous limit */

if (prlimit(pid, RLIMIT_CPU, newp, &old) == -1)
err(EXIT_FAILURE, "prlimit-1");
printf("'Previous limits: soft=%jd; hard=%jd\n",
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

/* Retrieve and display new CPU time limit */

if (priimit(pid, RLIMIT_CPU, NULL, &old) == -1)
err(EXIT_FAILURE, "prlimit-2'");

printf("'New limits: soft=%jd; hard=%jd\n",

(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

exit(EXIT_SUCCESS);

prlimit(1), dup(2), fcntl(2), fork(2), getrusage(2), mlock(2), mmap(2), open(2), quotactl(2), sbrk(2),
shmctl(2), malloc(3), sigqueue(3), ulimit(3), core(5), capabilities(7), cgroups(7), credentials(7), sig-

nal(7)

Linux man-pages 6.7 2024-02-25 6

getrusage(2)

NAME

System Calls Manual getrusage(2)

getrusage — get resource usage

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/resource.h>

int getrusage(int who, struct rusage *usage);

DESCRIPTION

getrusage() returns resource usage measures for who, which can be one of the following:

RUSAGE_SELF

Return resource usage statistics for the calling process, which is the sum of resources used by
all threads in the process.

RUSAGE_CHILDREN
Return resource usage statistics for all children of the calling process that have terminated and
been waited for. These statistics will include the resources used by grandchildren, and further
removed descendants, if all of the intervening descendants waited on their terminated children.

RUSAGE_THREAD (since Linux 2.6.26)
Return resource usage statistics for the calling thread. The _GNU_SOURCE feature test
macro must be defined (before including any header file) in order to obtain the definition of
this constant from <sys/resource.h>.

The resource usages are returned in the structure pointed to by usage, which has the following form:

struct rusage {
struct timeval ru_utime; /*
struct timeval ru_stime; /*

long
long
long
long
long
long
long
long
long
long
long
long
long
long

};

ru_maxrss;
ru_iXxrss;
ru_idrss;
ru_isrss;
ru_minflt;
ru_majflt;
ru_nswap;
ru_inblock;
ru_oublock;
ru_msgsnd;
ru_msgrcv;
ru_nsignals;
ru_nvcsw;
ru_nivcsw;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

user CPU time used */

system CPU time used */

maximum resident set size */
integral shared memory size */
integral unshared data size */
integral unshared stack size */
page reclaims (soft page faults) */
page faults (hard page faults) */
swaps */

block input operations */

block output operations */

IPC messages sent */

IPC messages received */

signals received */

voluntary context switches */
involuntary context switches */

Not all fields are completed; unmaintained fields are set to zero by the kernel. (The unmaintained fields
are provided for compatibility with other systems, and because they may one day be supported on
Linux.) The fields are interpreted as follows:

ru_utime

This is the total amount of time spent executing in user mode, expressed in a timeval structure
(seconds plus microseconds).

ru_stime

This is the total amount of time spent executing in kernel mode, expressed in a timeval struc-
ture (seconds plus microseconds).

ru_maxrss (since Linux 2.6.32)
This is the maximum resident set size used (in kilobytes). For RUSAGE_CHILDREN, this
is the resident set size of the largest child, not the maximum resident set size of the process

tree.

Linux man-pages 6.7

2024-03-14 1

getrusage(2) System Calls Manual getrusage(2)

ru_ixrss (unmaintained)
This field is currently unused on Linux.

ru_idrss (unmaintained)
This field is currently unused on Linux.

ru_isrss (unmaintained)
This field is currently unused on Linux.

ru_minflt
The number of page faults serviced without any I/O activity; here 1/O activity is avoided by
“reclaiming” a page frame from the list of pages awaiting reallocation.

ru_majflt
The number of page faults serviced that required 1/O activity.

ru_nswap (unmaintained)
This field is currently unused on Linux.

ru_inblock (since Linux 2.6.22)
The number of times the filesystem had to perform input.

ru_oublock (since Linux 2.6.22)
The number of times the filesystem had to perform output.

ru_msgsnd (unmaintained)
This field is currently unused on Linux.

ru_msgrev (unmaintained)
This field is currently unused on Linux.

ru_nsignals (unmaintained)
This field is currently unused on Linux.

ru_nvesw (since Linux 2.6)
The number of times a context switch resulted due to a process voluntarily giving up the
processor before its time slice was completed (usually to await availability of a resource).

ru_nivesw (since Linux 2.6)
The number of times a context switch resulted due to a higher priority process becoming
runnable or because the current process exceeded its time slice.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT
usage points outside the accessible address space.

EINVAL
who is invalid.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
getrusage() Thread safety | MT-Safe

STANDARDS
POSIX.1-2008.

POSIX.1 specifies getrusage(), but specifies only the fields ru_utime and ru_stime.
RUSAGE_THREAD is Linux-specific.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Before Linux 2.6.9, if the disposition of SIGCHLD is set to SIG_IGN then the resource usages of
child processes are automatically included in the value returned by RUSAGE_CHILDREN, although
POSIX.1-2001 explicitly prohibits this. This nonconformance is rectified in Linux 2.6.9 and later.

The structure definition shown at the start of this page was taken from 4.3BSD Reno.

Linux man-pages 6.7 2024-03-14 2

getrusage(2) System Calls Manual getrusage(2)

Ancient systems provided a vtimes() function with a similar purpose to getrusage(). For backward
compatibility, glibc (up until Linux 2.32) also provides vtimes(). All new applications should be writ-
ten using getrusage(). (Since Linux 2.33, glibc no longer provides an vtimes() implementation.)

NOTES
Resource usage metrics are preserved across an execve(2).

SEE ALSO
clock_gettime(2), getrlimit(2), times(2), wait(2), wait4(2), clock(3), proc_pid_stat(5), proc_pid_io(5)

Linux man-pages 6.7 2024-03-14 3

getsid(2) System Calls Manual getsid(2)

NAME

getsid — get session ID
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
pid_t getsid(pid_t pid);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getsid():
_XOPEN_SOURCE >=500
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
getsid() returns the session ID of the process with process ID pid. If pid is 0, getsid() returns the ses-
sion 1D of the calling process.

RETURN VALUE
On success, a session 1D is returned. On error, (pid_t) —1 is returned, and errno is set to indicate the
error.

ERRORS
EPERM
A process with process ID pid exists, but it is not in the same session as the calling process,
and the implementation considers this an error.

ESRCH
No process with process ID pid was found.

VERSIONS
Linux does not return EPERM.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4. Linux 2.0.

NOTES
See credentials(7) for a description of sessions and session IDs.

SEE ALSO
getpgid(2), setsid(2), credentials(7)

Linux man-pages 6.7 2023-10-31 1

getsockname(2) System Calls Manual getsockname(2)

NAME

getsockname — get socket name
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getsockname() returns the current address to which the socket sockfd is bound, in the buffer pointed to
by addr. The addrlen argument should be initialized to indicate the amount of space (in bytes) pointed
to by addr. On return it contains the actual size of the socket address.

The returned address is truncated if the buffer provided is too small; in this case, addrlen will return a
value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EBADF
The argument sockfd is not a valid file descriptor.
EFAULT
The addr argument points to memory not in a valid part of the process address space.
EINVAL
addrlen is invalid (e.g., is negative).
ENOBUFS
Insufficient resources were available in the system to perform the operation.
ENOTSOCK
The file descriptor sockfd does not refer to a socket.
STANDARDS
POSIX.1-2008.
HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).
SEE ALSO

bind(2), socket(2), getifaddrs(3), ip(7), socket(7), unix(7)

Linux man-pages 6.7 2023-10-31 1

getsockopt(2) System Calls Manual getsockopt(2)

getsockopt, setsockopt — get and set options on sockets

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/socket.h>

int getsockopt(int sockfd, int level, int optname,
void optval[restrict *.optlen],
socklen_t *restrict optlen);

int setsockopt(int sockfd, int level, int optname,
const void optval[.optlen],
socklen_t optlen);

DESCRIPTION

getsockopt() and setsockopt() manipulate options for the socket referred to by the file descriptor
sockfd. Options may exist at multiple protocol levels; they are always present at the uppermost socket
level.

When manipulating socket options, the level at which the option resides and the name of the option
must be specified. To manipulate options at the sockets APl level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropriate pro-
tocol controlling the option is supplied. For example, to indicate that an option is to be interpreted by
the TCP protocol, level should be set to the protocol number of TCP; see getprotoent(3).

The arguments optval and optlen are used to access option values for setsockopt(). For getsockopt()
they identify a buffer in which the value for the requested option(s) are to be returned. For getsock-
opt(), optlen is a value-result argument, initially containing the size of the buffer pointed to by optval,
and modified on return to indicate the actual size of the value returned. If no option value is to be sup-
plied or returned, optval may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol module for in-
terpretation. The include file <sys/socket.h> contains definitions for socket level options, described be-
low. Options at other protocol levels vary in format and name; consult the appropriate entries in section
4 of the manual.

Most socket-level options utilize an int argument for optval. For setsockopt(), the argument should be
nonzero to enable a boolean option, or zero if the option is to be disabled.

For a description of the available socket options see socket(7) and the appropriate protocol man pages.

RETURN VALUE

On success, zero is returned for the standard options. On error, -1 is returned, and errno is set to indi-
cate the error.

Netfilter allows the programmer to define custom socket options with associated handlers; for such op-
tions, the return value on success is the value returned by the handler.

ERRORS

EBADF
The argument sockfd is not a valid file descriptor.

EFAULT
The address pointed to by optval is not in a valid part of the process address space. For get-
sockopt(), this error may also be returned if optlen is not in a valid part of the process address
space.

EINVAL

optlen invalid in setsockopt(). In some cases this error can also occur for an invalid value in
optval (e.g., for the IP_ADD_MEMBERSHIP option described in ip(7)).

ENOPROTOOPT
The option is unknown at the level indicated.

Linux man-pages 6.7 2023-10-31 1

getsockopt(2) System Calls Manual getsockopt(2)

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).
BUGS
Several of the socket options should be handled at lower levels of the system.

SEE ALSO
ioctl(2), socket(2), getprotoent(3), protocols(5), ip(7), packet(7), socket(7), tcp(7), udp(7), unix(7)

Linux man-pages 6.7 2023-10-31 2

gettid(2) System Calls Manual gettid(2)

NAME

gettid — get thread identification
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#define _ GNU_SOURCE
#include <unistd.h>

pid_t gettid(void);

DESCRIPTION
gettid() returns the caller’s thread ID (TID). In a single-threaded process, the thread ID is equal to the
process ID (PID, as returned by getpid(2)). In a multithreaded process, all threads have the same PID,
but each one has a unique TID. For further details, see the discussion of CLONE_THREAD in
clone(2).

RETURN VALUE
On success, returns the thread ID of the calling thread.

ERRORS
This call is always successful.

STANDARDS
Linux.

HISTORY
Linux 2.4.11, glibc 2.30.

NOTES
The thread ID returned by this call is not the same thing as a POSIX thread ID (i.e., the opaque value
returned by pthread_self(3)).

In a new thread group created by a clone(2) call that does not specify the CLONE_THREAD flag (or,
equivalently, a new process created by fork(2)), the new process is a thread group leader, and its thread
group ID (the value returned by getpid(2)) is the same as its thread ID (the value returned by gettid())

SEE ALSO
capget(2), clone(2), fentl(2), fork(2), get robust_list(2), getpid(2), ioprio_set(2), perf_event_open(2),
sched_setaffinity(2), sched_setparam(2), sched_setscheduler(2), tgkill(2), timer_create(2)

Linux man-pages 6.7 2023-10-31 1

gettimeofday(2) System Calls Manual gettimeofday(2)

NAME

gettimeofday, settimeofday — get / set time
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/time.h>

int gettimeofday(struct timeval *restrict tv,
struct timezone *_Nullable restrict tz);
int settimeofday(const struct timeval *tv,
const struct timezone *_Nullable tz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

settimeofday():
Since glibc 2.19:
_DEFAULT_SOURCE
glibc 2.19 and earlier:
_BSD_SOURCE

DESCRIPTION
The functions gettimeofday() and settimeofday() can get and set the time as well as a timezone.

The tv argument is a struct timeval (as specified in <sys/time.h>):
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
}:
and gives the number of seconds and microseconds since the Epoch (see time(2)).
The tz argument is a struct timezone:

struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of DST correction */
}:
If either tv or tz is NULL, the corresponding structure is not set or returned. (However, compilation
warnings will result if tv is NULL.)

The use of the timezone structure is obsolete; the tz argument should normally be specified as NULL.
(See NOTES below.)

Under Linux, there are some peculiar "warp clock™ semantics associated with the settimeofday() sys-
tem call if on the very first call (after booting) that has a non-NULL tz argument, the tv argument is
NULL and the tz_minuteswest field is nonzero. (The tz_dsttime field should be zero for this case.) In
such a case it is assumed that the CMOS clock is on local time, and that it has to be incremented by this
amount to get UTC system time. No doubt it is a bad idea to use this feature.

RETURN VALUE
gettimeofday/() and settimeofday() return O for success. On error, —1 is returned and errno is set to in-
dicate the error.

ERRORS
EFAULT
One of tv or tz pointed outside the accessible address space.

EINVAL
(settimeofday()): timezone is invalid.

EINVAL
(settimeofday()): tv.tv_sec is negative or tv.tv_usec is outside the range [0, 999,999].

EINVAL (since Linux 4.3)
(settimeofday()): An attempt was made to set the time to a value less than the current value of
the CLOCK_MONOTONIC clock (see clock_gettime(2)).

Linux man-pages 6.7 2023-10-31 1

gettimeofday(2) System Calls Manual gettimeofday(2)

EPERM
The calling process has insufficient privilege to call settimeofday(); under Linux the
CAP_SYS_TIME capability is required.

VERSIONS
C library/kernel differences
On some architectures, an implementation of gettimeofday() is provided in the vdso(7).

The kernel accepts NULL for both tv and tz. The timezone argument is ignored by glibc and musl, and
not passed to/from the kernel. Android’s bionic passes the timezone argument to/from the kernel, but
Android does not update the kernel timezone based on the device timezone in Settings, so the kernel’s
timezone is typically UTC.

STANDARDS
gettimeofday()
POSIX.1-2008 (obsolete).

settimeofday()
None.

HISTORY
SVr4, 4.3BSD. POSIX.1-2001 describes gettimeofday() but not settimeofday(). POSIX.1-2008
marks gettimeofday() as obsolete, recommending the use of clock_gettime(2) instead.

Traditionally, the fields of struct timeval were of type long.

The tz_dsttime field
On a non-Linux kernel, with glibc, the tz_dsttime field of struct timezone will be set to a nonzero value
by gettimeofday() if the current timezone has ever had or will have a daylight saving rule applied. In
this sense it exactly mirrors the meaning of daylight(3) for the current zone. On Linux, with glibc, the
setting of the tz_dsttime field of struct timezone has never been used by settimeofday() or gettimeof-
day(). Thus, the following is purely of historical interest.

On old systems, the field tz_dsttime contains a symbolic constant (values are given below) that indi-
cates in which part of the year Daylight Saving Time is in force. (Note: this value is constant through-
out the year: it does not indicate that DST is in force, it just selects an algorithm.) The daylight saving
time algorithms defined are as follows:

DST_NONE /* not on DST */

DST_USA /* USA style DST */

DST_AUST /* Australian style DST */
DST_WET /* Western European DST */
DST_MET /* Middle European DST */
DST_EET /* Eastern European DST */
DST_CAN /* Canada */

DST_GB /* Great Britain and Eire */
DST_RUM /* Romania */

DST_TUR /* Turkey */

DST_AUSTALT /* Australian style with shift in 1986 */

Of course it turned out that the period in which Daylight Saving Time is in force cannot be given by a
simple algorithm, one per country; indeed, this period is determined by unpredictable political deci-
sions. So this method of representing timezones has been abandoned.

NOTES
The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the
system administrator manually changes the system time). If you need a monotonically increasing
clock, see clock_gettime(2).

Macros for operating on timeval structures are described in timeradd(3).

SEE ALSO
date(1), adjtimex(2), clock_gettime(2), time(2), ctime(3), ftime(3), timeradd(3), capabilities(7), time(7),
vdso(7), hwclock(8)

Linux man-pages 6.7 2023-10-31 2

getuid(2) System Calls Manual getuid(2)

NAME

getuid, geteuid — get user identity
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <unistd.h>
uid_t getuid(void);
uid_t geteuid(void);
DESCRIPTION
getuid() returns the real user ID of the calling process.
geteuid() returns the effective user ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

In UNIX V6 the getuid() call returned (euid << 8) + uid. UNIX V7 introduced separate calls getuid()
and geteuid().

The original Linux getuid() and geteuid() system calls supported only 16-bit user IDs. Subsequently,
Linux 2.4 added getuid32() and geteuid32(), supporting 32-bit IDs. The glibc getuid() and geteuid()
wrapper functions transparently deal with the variations across kernel versions.

On Alpha, instead of a pair of getuid() and geteuid() system calls, a single getxuid() system call is
provided, which returns a pair of real and effective UIDs. The glibc getuid() and geteuid() wrapper
functions transparently deal with this. See syscall(2) for details regarding register mapping.

SEE ALSO
getresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.7 2023-10-31 1

getunwind (2) System Calls Manual getunwind (2)

NAME

getunwind — copy the unwind data to caller’s buffer
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/unwind.h>
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] long syscall(SYS_getunwind, void buf [.buf_size],
size_t buf_size);

DESCRIPTION
Note: this system call is obsolete.

The 1A-64-specific getunwind() system call copies the kernel’s call frame unwind data into the buffer
pointed to by buf and returns the size of the unwind data; this data describes the gate page (kernel code
that is mapped into user space).

The size of the buffer buf is specified in buf_size. The data is copied only if buf_size is greater than or
equal to the size of the unwind data and buf is not NULL; otherwise, no data is copied, and the call
succeeds, returning the size that would be needed to store the unwind data.

The first part of the unwind data contains an unwind table. The rest contains the associated unwind in-
formation, in no particular order. The unwind table contains entries of the following form:

u6b4 start; (64-bit address of start of function)
u64 end; (64-bit address of end of function)
u64 info; (BUF-relative offset to unwind info)

An entry whose start value is zero indicates the end of the table. For more information about the for-
mat, see the 1A-64 Software Conventions and Runtime Architecture manual.

RETURN VALUE
On success, getunwind() returns the size of the unwind data. On error, =1 is returned and errno is set
to indicate the error.

ERRORS
getunwind() fails with the error EFAULT if the unwind info can’t be stored in the space specified by
buf .

STANDARDS
Linux on |A-64.

HISTORY
Linux 2.4.

This system call has been deprecated. The modern way to obtain the kernel’s unwind data is via the
vdso(7).

SEE ALSO
getauxval(3)

Linux man-pages 6.7 2023-10-31 1

getxattr(2) System Calls Manual getxattr(2)

getxattr, Igetxattr, fgetxattr — retrieve an extended attribute value

LIBRARY

Standard C library (libc, —Ic)

SYNOPSIS

#include <sys/xattr.n>

ssize_t getxattr(const char *path, const char *name,
void value[.size], size_t size);

ssize_t Igetxattr(const char * path, const char *name,
void value[.size], size_t size);

ssize_t fgetxattr(int fd, const char *name,
void valuel[.size], size_t size);

DESCRIPTION

Extended attributes are name:value pairs associated with inodes (files, directories, symbolic links, etc.).
They are extensions to the normal attributes which are associated with all inodes in the system (i.e., the
stat(2) data). A complete overview of extended attributes concepts can be found in xattr(7).

getxattr() retrieves the value of the extended attribute identified by name and associated with the given
path in the filesystem. The attribute value is placed in the buffer pointed to by value; size specifies the
size of that buffer. The return value of the call is the number of bytes placed in value.

Igetxattr() is identical to getxattr(), except in the case of a symbolic link, where the link itself is inter-
rogated, not the file that it refers to.

fgetxattr() is identical to getxattr(), only the open file referred to by fd (as returned by open(2)) is in-
terrogated in place of path.

An extended attribute name is a null-terminated string. The name includes a namespace prefix; there
may be several, disjoint namespaces associated with an individual inode. The value of an extended at-
tribute is a chunk of arbitrary textual or binary data that was assigned using setxattr(2).

If size is specified as zero, these calls return the current size of the named extended attribute (and leave
value unchanged). This can be used to determine the size of the buffer that should be supplied in a sub-
sequent call. (But, bear in mind that there is a possibility that the attribute value may change between
the two calls, so that it is still necessary to check the return status from the second call.)

RETURN VALUE

On success, these calls return a nonnegative value which is the size (in bytes) of the extended attribute
value. On failure, —1 is returned and errno is set to indicate the error.

ERRORS

E2BIG The size of the attribute value is larger than the maximum size allowed; the attribute cannot be
retrieved. This can happen on filesystems that support very large attribute values such as
NFSv4, for example.

ENODATA
The named attribute does not exist, or the process has no access to this attribute.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

ERANGE
The size of the value buffer is too small to hold the result.

In addition, the errors documented in stat(2) can also occur.

STANDARDS

Linux.

HISTORY

Linux 2.4, glibc 2.3.

EXAMPLES

See listxattr(2).

Linux man-pages 6.7 2023-10-31 1

getxattr(2) System Calls Manual getxattr(2)

SEE ALSO
getfattr (1), setfattr (1), listxattr(2), open(2), removexattr(2), setxattr(2), stat(2), symlink(7), xattr(7)

Linux man-pages 6.7 2023-10-31 2

idle(2) System Calls Manual idle(2)

NAME
idle — make process 0 idle

SYNOPSIS
#include <unistd.h>
[[deprecated]] int idle(void);

DESCRIPTION
idle() is an internal system call used during bootstrap. It marks the process’s pages as swappable, low-
ers its priority, and enters the main scheduling loop. idle() never returns.

Only process 0 may call idle(). Any user process, even a process with superuser permission, will re-
ceive EPERM.

RETURN VALUE
idle() never returns for process 0, and always returns —1 for a user process.

ERRORS
EPERM
Always, for a user process.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.3.13.

Linux man-pages 6.7 2023-10-31 1

init_module(2) System Calls Manual init_module(2)

NAME

init_module, finit_module - load a kernel module
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/module.h> /* Definition of MODULE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_init_module, void module_image[.len], unsigned long len,
const char *param_values);

int syscall(SYS_finit_module, int fd,
const char *param_values, int flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of syscall(2).

DESCRIPTION
init_module() loads an ELF image into kernel space, performs any necessary symbol relocations, ini-
tializes module parameters to values provided by the caller, and then runs the module’s init function.
This system call requires privilege.

The module_image argument points to a buffer containing the binary image to be loaded; len specifies
the size of that buffer. The module image should be a valid ELF image, built for the running kernel.

The param_values argument is a string containing space-delimited specifications of the values for
module parameters (defined inside the module using module_param() and module_param_ar-
ray())The kernel parses this string and initializes the specified parameters. Each of the parameter spec-
ifications has the form:

name[=value[,value...]]

The parameter name is one of those defined within the module using module_param() (see the Linux
kernel source file include/linux/moduleparam.h). The parameter value is optional in the case of bool
and invbool parameters. Values for array parameters are specified as a comma-separated list.

finit_module()
The finit_module() system call is like init_module(), but reads the module to be loaded from the file
descriptor fd. It is useful when the authenticity of a kernel module can be determined from its location
in the filesystem; in cases where that is possible, the overhead of using cryptographically signed mod-
ules to determine the authenticity of a module can be avoided. The param_values argument is as for
init_module().

The flags argument modifies the operation of finit_module(). It is a bit mask value created by ORing
together zero or more of the following flags:

MODULE_INIT_IGNORE_MODVERSIONS
Ignore symbol version hashes.

MODULE_INIT_IGNORE_VERMAGIC
Ignore kernel version magic.

There are some safety checks built into a module to ensure that it matches the kernel against which it is
loaded. These checks are recorded when the module is built and verified when the module is loaded.
First, the module records a "vermagic" string containing the kernel version number and prominent fea-
tures (such as the CPU type). Second, if the module was built with the CONFIG_MODVERSIONS
configuration option enabled, a version hash is recorded for each symbol the module uses. This hash is
based on the types of the arguments and return value for the function named by the symbol. In this
case, the kernel version number within the "vermagic" string is ignored, as the symbol version hashes
are assumed to be sufficiently reliable.

Using the MODULE_INIT_IGNORE_VERMAGIC flag indicates that the "vermagic" string is to be
ignored, and the MODULE_INIT_IGNORE_MODVERSIONS flag indicates that the symbol ver-
sion hashes are to be ignored. If the kernel is built to permit forced loading (i.e., configured with
CONFIG_MODULE_FORCE_LOAD), then loading continues, otherwise it fails with the error
ENOEXEC as expected for malformed modules.

Linux man-pages 6.7 2023-10-31 1

init_module(2) System Calls Manual init_module(2)

RETURN VALUE
On success, these system calls return 0. On error, —1 is returned and errno is set to indicate the error.

ERRORS
EBADMSG (since Linux 3.7)
Module signature is misformatted.

EBUSY
Timeout while trying to resolve a symbol reference by this module.

EFAULT
An address argument referred to a location that is outside the process’s accessible address
space.

ENOKEY (since Linux 3.7)
Module signature is invalid or the kernel does not have a key for this module. This error is re-
turned only if the kernel was configured with CONFIG_MODULE_SIG_FORCE; if the ker-
nel was not configured with this option, then an invalid or unsigned module simply taints the
kernel.

ENOMEM
Out of memory.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capability), or module
loading is disabled (see /proc/sys/kernel/modules_disabled in proc(5)).

The following errors may additionally occur for init_module():

EEXIST
A module with this name is already loaded.

EINVAL
param_values is invalid, or some part of the ELF image in module_image contains inconsis-
tencies.

ENOEXEC
The binary image supplied in module_image is not an ELF image, or is an ELF image that is
invalid or for a different architecture.

The following errors may additionally occur for finit_module():

EBADF
The file referred to by fd is not opened for reading.

EFBIG
The file referred to by fd is too large.

EINVAL
flags is invalid.

ENOEXEC
fd does not refer to an open file.

ETXTBSY (since Linux 4.7)
The file referred to by fd is opened for read-write.

In addition to the above errors, if the module’s init function is executed and returns an error, then
init_module() or finit_module() fails and errno is set to the value returned by the init function.

STANDARDS
Linux.

HISTORY
finit_module()
Linux 3.8.

The init_module() system call is not supported by glibc. No declaration is provided in glibc headers,
but, through a quirk of history, glibc versions before glibc 2.23 did export an ABI for this system call.
Therefore, in order to employ this system call, it is (before glibc 2.23) sufficient to manually declare the
interface in your code; alternatively, you can invoke the system call using syscall(2).

Linux man-pages 6.7 2023-10-31 2

init_module(2) System Calls Manual init_module(2)

Linux 2.4 and earlier
In Linux 2.4 and earlier, the init_module() system call was rather different:

#include <linux/module.h>
int init_module(const char *name, struct module *image);

(User-space applications can detect which version of init_module() is available by calling query_mod-
ule(); the latter call fails with the error ENOSY'S on Linux 2.6 and later.)

The older version of the system call loads the relocated module image pointed to by image into kernel
space and runs the module’s init function. The caller is responsible for providing the relocated image
(since Linux 2.6, the init_module() system call does the relocation).

The module image begins with a module structure and is followed by code and data as appropriate.
Since Linux 2.2, the module structure is defined as follows:

struct module {

unsigned long size_of _struct;
struct module *next;

const char *name;

unsigned long size;

long usecount;
unsigned long flags;

unsigned int nsyms;

unsigned int ndeps;

struct module_symbol *syms;

struct module_ref *deps;

struct module_ref *refs;

int Cinit)(void);
void (*cleanup) (void);

const struct exception_table_entry *ex_table_start;
const struct exception_table_entry *ex_table_end;
#ifdef __ alpha_
unsigned long gp;
#endif

}:
All of the pointer fields, with the exception of next and refs, are expected to point within the module
body and be initialized as appropriate for kernel space, that is, relocated with the rest of the module.

NOTES
Information about currently loaded modules can be found in /proc/modules and in the file trees under
the per-module subdirectories under /sys/module

See the Linux kernel source file include/linux/module.h for some useful background information.

SEE ALSO
create_module(2), delete_module(2), query_module(2), Ismod(8), modprobe(8)

Linux man-pages 6.7 2023-10-31 3

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

NAME

inotify_add_watch — add a watch to an initialized inotify instance
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/inotify.h>
int inotify_add_watch(int fd, const char * pathname, uint32_t mask);

DESCRIPTION
inotify_add_watch() adds a new watch, or modifies an existing watch, for the file whose location is
specified in pathname; the caller must have read permission for this file. The fd argument is a file de-
scriptor referring to the inotify instance whose watch list is to be modified. The events to be monitored
for pathname are specified in the mask bit-mask argument. See inotify(7) for a description of the bits
that can be set in mask.

A successful call to inotify_add_watch() returns a unique watch descriptor for this inotify instance, for
the filesystem object (inode) that corresponds to pathname. If the filesystem object was not previously
being watched by this inotify instance, then the watch descriptor is newly allocated. If the filesystem
object was already being watched (perhaps via a different link to the same object), then the descriptor
for the existing watch is returned.

The watch descriptor is returned by later read(2)s from the inotify file descriptor. These reads fetch in-
otify_event structures (see inotify(7)) indicating filesystem events; the watch descriptor inside this
structure identifies the object for which the event occurred.

RETURN VALUE
On success, inotify_add_watch() returns a watch descriptor (a nonnegative integer). On error, -1 is
returned and errno is set to indicate the error.

ERRORS

EACCES
Read access to the given file is not permitted.

EBADF
The given file descriptor is not valid.

EEXIST
mask contains IN_MASK_CREATE and pathname refers to a file already being watched by
the same fd.

EFAULT
pathname points outside of the process’s accessible address space.

EINVAL
The given event mask contains no valid events; or mask contains both IN_MASK_ADD and
IN_MASK_CREATE; or fd is not an inotify file descriptor.

ENAMETOOLONG
pathname is too long.

ENOENT
A directory component in pathname does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The user limit on the total number of inotify watches was reached or the kernel failed to allo-
cate a needed resource.

ENOTDIR
mask contains IN_ONLYDIR and pathname is not a directory.

STANDARDS
Linux.

Linux man-pages 6.7 2023-10-31 1

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

HISTORY
Linux 2.6.13.

EXAMPLES
See inotify(7).

SEE ALSO
inotify_init(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.7 2023-10-31 2

inotify_init(2) System Calls Manual

NAME

inotify_init, inotify_init1 — initialize an inotify instance
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/inotify.h>
int inotify_init(void);
int inotify_initl(int flags);

DESCRIPTION
For an overview of the inotify API, see inotify(7).

inotify_init(2)

inotify_init() initializes a new inotify instance and returns a file descriptor associated with a new ino-

tify event queue.

If flags is O, then inotify_init1() is the same as inotify_init(). The following values can be bitwise

ORed in flags to obtain different behavior:
IN_NONBLOCK

Set the O_NONBLOCK file status flag on the open file description (see open(2)) referred to
by the new file descriptor. Using this flag saves extra calls to fcntl(2) to achieve the same re-

sult.
IN_ CLOEXEC

Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the description of

the O_CLOEXEC flag in open(2) for reasons why this may be useful.

RETURN VALUE

On success, these system calls return a new file descriptor. On error, =1 is returned, and errno is set to

indicate the error.

ERRORS
EINVAL
(inotify_init1()) An invalid value was specified in flags.
EMFILE
The user limit on the total number of inotify instances has been reached.
EMFILE
The per-process limit on the number of open file descriptors has been reached.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENOMEM
Insufficient kernel memory is available.
STANDARDS
Linux.
HISTORY
inotify_init()
Linux 2.6.13, glibc 2.4.
inotify_init1()
Linux 2.6.27, glibc 2.9.
SEE ALSO

inotify_add_watch(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.7 2023-10-31

inotify_rm_watch(2) System Calls Manual inotify_rm_watch(2)

NAME

inotify_rm_watch — remove an existing watch from an inotify instance
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/inotify.h>
int inotify_rm_watch(int fd, int wd);

DESCRIPTION
inotify_rm_watch() removes the watch associated with the watch descriptor wd from the inotify in-
stance associated with the file descriptor fd.

Removing a watch causes an IN_IGNORED event to be generated for this watch descriptor. (See ino-
tify(7).)
RETURN VALUE

On success, inotify_rm_watch() returns zero. On error, —1 is returned and errno is set to indicate the
error.

ERRORS
EBADF
fd is not a valid file descriptor.

EINVAL
The watch descriptor wd is not valid; or fd is not an inotify file descriptor.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

SEE ALSO
inotify_add_watch(2), inotify_init(2), inotify(7)

Linux man-pages 6.7 2023-10-31 1

io_cancel(2) System Calls Manual io_cancel(2)

NAME
io_cancel - cancel an outstanding asynchronous 1/0 operation

LIBRARY
Standard C library (libc, —Ic)

Alternatively, Asynchronous I/O library (libaio, —laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of needed types */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_cancel, aio_context_t ctx_id, struct iocb *iocb,
struct io_event *result);

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function provided by libaio
uses a different type for the ctx_id argument. See VERSIONS.

The io_cancel() system call attempts to cancel an asynchronous 1/0O operation previously submitted
with io_submit(2). The iocb argument describes the operation to be canceled and the ctx_id argument
is the AIO context to which the operation was submitted. If the operation is successfully canceled, the
event will be copied into the memory pointed to by result without being placed into the completion
queue.

RETURN VALUE
On success, io_cancel() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN
The iocb specified was not canceled.

EFAULT
One of the data structures points to invalid data.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_cancel() is not implemented on this architecture.

VERSIONS
You probably want to use the io_cancel() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id argument. Note
also that the libaio wrapper does not follow the usual C library conventions for indicating errors: on er-
ror it returns a negated error number (the negative of one of the values listed in ERRORS). If the sys-
tem call is invoked via syscall(2), then the return value follows the usual conventions for indicating an
error: =1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.7 2023-10-31 1

io_destroy(2) System Calls Manual io_destroy(2)

NAME

io_destroy — destroy an asynchronous 1/O context
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/aio_abi.h> /* Definition of aio_context_t */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_destroy, aio_context_t ctx_id);
Note: glibc provides no wrapper for io_destroy(), necessitating the use of syscall(2).
DESCRIPTION

Note: this page describes the raw Linux system call interface. The wrapper function provided by libaio
uses a different type for the ctx_id argument. See VERSIONS.

The io_destroy() system call will attempt to cancel all outstanding asynchronous 1/O operations against
ctx_id, will block on the completion of all operations that could not be canceled, and will destroy the
ctx_id.

RETURN VALUE
On success, io_destroy() returns 0. For the failure return, see VERSIONS.

ERRORS
EFAULT
The context pointed to is invalid.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_destroy() is not implemented on this architecture.

VERSIONS
You probably want to use the io_destroy() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id argument. Note
also that the libaio wrapper does not follow the usual C library conventions for indicating errors: on er-
ror it returns a negated error number (the negative of one of the values listed in ERRORS). If the sys-
tem call is invoked via syscall(2), then the return value follows the usual conventions for indicating an
error: —1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.7 2023-10-31 1

i0_getevents(2) System Calls Manual io_getevents(2)

NAME
io_getevents — read asynchronous I/O events from the completion queue

LIBRARY
Standard C library (libc, —Ic)

Alternatively, Asynchronous I/O library (libaio, —laio); see VERSIONS.
SYNOPSIS

#include <linux/aio_abi.h> /* Definition of *io_* types */

#include <sys/syscall.h> /* Definition of SYS_* constants */

#include <unistd.h>

int syscall(SYS_io_getevents, aio_context_t ctx_id,
long min_nr, long nr, struct io_event *events,
struct timespec *timeout);

Note: glibc provides no wrapper for io_getevents(), necessitating the use of syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function provided by libaio
uses a different type for the ctx_id argument. See VERSIONS.

The io_getevents() system call attempts to read at least min_nr events and up to nr events from the
completion queue of the AlO context specified by ctx_id.

The timeout argument specifies the amount of time to wait for events, and is specified as a relative time-
out in a timespec(3) structure.

The specified time will be rounded up to the system clock granularity and is guaranteed not to expire
early.

Specifying timeout as NULL means block indefinitely until at least min_nr events have been obtained.

RETURN VALUE
On success, io_getevents() returns the number of events read. This may be 0, or a value less than
min_nr, if the timeout expired. It may also be a nonzero value less than min_nr, if the call was inter-
rupted by a signal handler.

For the failure return, see VERSIONS.

ERRORS
EFAULT
Either events or timeout is an invalid pointer.

EINTR
Interrupted by a signal handler; see signal(7).

EINVAL
ctx_id is invalid. min_nr is out of range or nr is out of range.

ENOSYS
io_getevents() is not implemented on this architecture.

VERSIONS
You probably want to use the io_getevents() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id argument. Note
also that the libaio wrapper does not follow the usual C library conventions for indicating errors: on er-
ror it returns a negated error number (the negative of one of the values listed in ERRORS). If the sys-
tem call is invoked via syscall(2), then the return value follows the usual conventions for indicating an
error: =1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

Linux man-pages 6.7 2023-10-31 1

i0_getevents(2) System Calls Manual io_getevents(2)

BUGS
An invalid ctx_id may cause a segmentation fault instead of generating the error EINVAL.

SEE ALSO
io_cancel(2), io_destroy(2), io_setup(2), io_submit(2), timespec(3), aio(7), time(7)

Linux man-pages 6.7 2023-10-31 2

i0_setup(2) System Calls Manual io_setup(2)

NAME
i0_setup — create an asynchronous 1/0 context

LIBRARY
Standard C library (libc, —Ic)

Alternatively, Asynchronous I/O library (libaio, —laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Defines needed types */

long io_setup(unsigned int nr_events, aio_context_t *ctx_idp);
Note: There is no glibc wrapper for this system call; see VERSIONS.
DESCRIPTION

Note: this page describes the raw Linux system call interface. The wrapper function provided by libaio
uses a different type for the ctx_idp argument. See VERSIONS.

The io_setup() system call creates an asynchronous I/O context suitable for concurrently processing
nr_events operations. The ctx_idp argument must not point to an AlO context that already exists, and
must be initialized to O prior to the call. On successful creation of the AlO context, *ctx_idp is filled in
with the resulting handle.

RETURN VALUE
On success, i0_setup() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN
The specified nr_events exceeds the limit of available events, as defined in
Iproc/sys/fs/aio—max—nr (see proc(5)).
EFAULT
An invalid pointer is passed for ctx_idp.
EINVAL
ctx_idp is not initialized, or the specified nr_events exceeds internal limits. nr_events should
be greater than 0.
ENOMEM
Insufficient kernel resources are available.
ENOSYS
io_setup() is not implemented on this architecture.
VERSIONS

glibc does not provide a wrapper for this system call. You could invoke it using syscall(2). But in-
stead, you probably want to use the io_setup() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t *) for the ctx_idp argument.
Note also that the libaio wrapper does not follow the usual C library conventions for indicating errors:
on error it returns a negated error number (the negative of one of the values listed in ERRORS). If the
system call is invoked via syscall(2), then the return value follows the usual conventions for indicating
an error: —1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_submit(2), aio(7)

Linux man-pages 6.7 2023-10-31 1

i0_submit(2) System Calls Manual io_submit(2)
NAME

io_submit — submit asynchronous 1/O blocks for processing
LIBRARY

Standard C library (libc, —Ic)
Alternatively, Asynchronous I/O library (libaio, —laio); see VERSIONS.

SYNOPSIS

#include <linux/aio_abi.h> /* Defines needed types */
int io_submit(aio_context_t ctx_id, long nr, struct iocb **iocbpp);
Note: There is no glibc wrapper for this system call; see VERSIONS.

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function provided by libaio
uses a different type for the ctx_id argument. See VERSIONS.

The io_submit() system call queues nr I/O request blocks for processing in the AIO context ctx_id.
The iocbpp argument should be an array of nr AlO control blocks, which will be submitted to context
ctx_id.

The iocb (1/0 control block) structure defined in linux/aio_abi.h defines the parameters that control the
1/O operation.

#include <linux/aio_abi.h>

struct iocb {

__ue4 aio_data;

_u32 PADDED(aio_key, aio_rw_flags);
__ule aio_lio_opcode;
__s16 aio_reqprio;

. u32 aio_fildes;
__ue4 aio_buf;

__ue4 aio_nbytes;
__s64 aio_offset;
__ue4 aio_reserved2;
. u32 aio_flags;

. u32 aio_resfd;

¥
The fields of this structure are as follows:

aio_data
This data is copied into the data field of the io_event structure upon 1/O completion (see
i0_getevents(2)).

aio_key
This is an internal field used by the kernel. Do not modify this field after an io_submit() call.

aio_rw_flags
This defines the R/W flags passed with structure. The valid values are:

RWF_APPEND (since Linux 4.16)
Append data to the end of the file. See the description of the flag of the same name
in pwritev2(2) as well as the description of O_APPEND in open(2). The aio_offset
field is ignored. The file offset is not changed.

RWF_DSYNC (since Linux 4.13)
Write operation complete according to requirement of synchronized 1/O data in-
tegrity. See the description of the flag of the same name in pwritev2(2) as well the
description of O_DSYNC in open(2).

RWF_HIPRI (since Linux 4.13)
High priority request, poll if possible

Linux man-pages 6.7 2023-10-31 1

i0_submit(2) System Calls Manual io_submit(2)

RWF_NOWAIT (since Linux 4.14)
Don’t wait if the I/0O will block for operations such as file block allocations, dirty
page flush, mutex locks, or a congested block device inside the kernel. If any of
these conditions are met, the control block is returned immediately with a return
value of -EAGAIN in the res field of the io_event structure (see io_getevents(2)).

RWF_SYNC (since Linux 4.13)
Write operation complete according to requirement of synchronized 1/O file integrity.
See the description of the flag of the same name in pwritev2(2) as well the descrip-
tion of O_SYNC in open(2).

aio_lio_opcode
This defines the type of 1/0 to be performed by the iocb structure. The valid values are de-
fined by the enum defined in linux/aio_abi.h:

enum {
10CB_CMD_PREAD = O,
10CB_CMD_PWRITE = 1,
10CB_CMD_FSYNC = 2
10CB_CMD_FDSYNC
10CB_CMD_POLL =
10CB_CMD_NOOP =
10CB_CMD_PREADV = 7,
10CB_CMD_PWRITEV = 8,

31

51
61

}:

aio_reqprio

This defines the requests priority.
aio_fildes

The file descriptor on which the 1/0 operation is to be performed.
aio_buf

This is the buffer used to transfer data for a read or write operation.
aio_nbytes

This is the size of the buffer pointed to by aio_buf.

aio_offset
This is the file offset at which the 1/0 operation is to be performed.

aio_flags
This is the set of flags associated with the iocb structure. The valid values are:

IOCB_FLAG_RESFD
Asynchronous 1/0 control must signal the file descriptor mentioned in aio_resfd
upon completion.

IOCB_FLAG_IOPRIO (since Linux 4.18)
Interpret the aio_reqprio field as an IOPRIO_VALUE as defined by linux/ioprio.h.

aio_resfd
The file descriptor to signal in the event of asynchronous 1/0 completion.

RETURN VALUE
On success, io_submit() returns the number of iocbs submitted (which may be less than nr, or 0 if nr is
zero). For the failure return, see VERSIONS.

ERRORS
EAGAIN
Insufficient resources are available to queue any iocbs.
EBADF
The file descriptor specified in the first iocb is invalid.
EFAULT

One of the data structures points to invalid data.

Linux man-pages 6.7 2023-10-31 2

i0_submit(2) System Calls Manual io_submit(2)

EINVAL
The AIO context specified by ctx_id is invalid. nr is less than 0. The iocb at *iocbpp[0] is not
properly initialized, the operation specified is invalid for the file descriptor in the iocb, or the
value in the aio_regprio field is invalid.

ENOSYS
io_submit() is not implemented on this architecture.

EPERM
The aio_reqprio field is set with the class IOPRIO_CLASS_RT, but the submitting context
does not have the CAP_SYS_ADMIN capability.

VERSIONS
glibc does not provide a wrapper for this system call. You could invoke it using syscall(2). But in-
stead, you probably want to use the io_submit() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id argument. Note
also that the libaio wrapper does not follow the usual C library conventions for indicating errors: on er-
ror it returns a negated error number (the negative of one of the values listed in ERRORS). If the sys-
tem call is invoked via syscall(2), then the return value follows the usual conventions for indicating an
error: =1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), aio(7)

Linux man-pages 6.7 2023-10-31 3

ioctl(2) System Calls Manual ioctl(2)

NAME

ioctl — control device
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int fd, unsigned long op, ...); /* glibc, BSD */
int ioctl(int fd, int op, ...); /* musl, other UNIX */

DESCRIPTION
The ioctl() system call manipulates the underlying device parameters of special files. In particular,
many operating characteristics of character special files (e.g., terminals) may be controlled with ioctl()
operations. The argument fd must be an open file descriptor.

The second argument is a device-dependent operation code. The third argument is an untyped pointer
to memory. It’s traditionally char *argp (from the days before void * was valid C), and will be so
named for this discussion.

An ioctl() op has encoded in it whether the argument is an in parameter or out parameter, and the size
of the argument argp in bytes. Macros and defines used in specifying an ioctl() op are located in the
file <sys/ioctl.h>. See NOTES.

RETURN VALUE
Usually, on success zero is returned. A few ioctl() operations use the return value as an output parame-
ter and return a nonnegative value on success. On error, —1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF
fd is not a valid file descriptor.

EFAULT
argp references an inaccessible memory area.

EINVAL
op or argp is not valid.

ENOTTY
fd is not associated with a character special device.

ENOTTY
The specified operation does not apply to the kind of object that the file descriptor fd refer-
ences.

VERSIONS
Arguments, returns, and semantics of ioctl() vary according to the device driver in question (the call is
used as a catch-all for operations that don’t cleanly fit the UNIX stream 1/0O model).

STANDARDS
None.

HISTORY
Version 7 AT&T UNIX has
ioctl(int fildes, int op, struct sgttyb *argp);
(where struct sgttyb has historically been used by stty(2) and gtty(2), and is polymorphic by operation
type (like a void * would be, if it had been available)).

Syslll documents arg without a type at all.

4.3BSD has
ioctl(int d, unsigned long op, char *argp);
(with char * similarly in for void *).

SysVr4 has
int ioctl(int fildes, int op, ... /* arg */);

Linux man-pages 6.7 2024-03-03 1

ioctl(2) System Calls Manual ioctl(2)

NOTES
In order to use this call, one needs an open file descriptor. Often the open(2) call has unwanted side ef-
fects, that can be avoided under Linux by giving it the O_NONBLOCK flag.

ioctl structure
loctl op values are 32-bit constants. In principle these constants are completely arbitrary, but people
have tried to build some structure into them.

The old Linux situation was that of mostly 16-bit constants, where the last byte is a serial number, and
the preceding byte(s) give a type indicating the driver. Sometimes the major number was used: 0x03
for the HDIO_* ioctls, 0x06 for the LP* ioctls. And sometimes one or more ASCII letters were used.
For example, TCGETS has value 0x00005401, with 0x54 = 'T' indicating the terminal driver, and
CYGETTIMEOUT has value 0x00435906, with 0x43 0x59 ='C' "Y' indicating the cyclades driver.

Later (0.98p5) some more information was built into the number. One has 2 direction bits (00: none,
01: write, 10: read, 11: read/write) followed by 14 size bits (giving the size of the argument), followed
by an 8-bit type (collecting the ioctls in groups for a common purpose or a common driver), and an
8-bit serial number.

The macros describing this structure live in <asm/ioctLh> and are _1O(type,nr) and
{_IOR,_IOW,_IOWR}(type,nr,size). They use sizeof(size) so that size is a misnomer here: this third
argument is a data type.

Note that the size bits are very unreliable: in lots of cases they are wrong, either because of buggy
macros using sizeof(sizeof(struct)), or because of legacy values.

Thus, it seems that the new structure only gave disadvantages: it does not help in checking, but it
causes varying values for the various architectures.

SEE ALSO
execve(2), fentl(2), ioctl_console(2), ioctl fat(2), ioctl ficlone(2), ioctl_ficlonerange(2), ioctl_fid-
eduperange(2), ioctl_fslabel(2), ioctl_getfsmap(2), ioctl_iflags(2), ioctl_ns(2), ioctl_tty(2), ioctl_user-
faultfd(2), open(2), sd(4), tty(4)

Linux man-pages 6.7 2024-03-03 2

ioctl_console(2) System Calls Manual ioctl_console(2)

NAME
ioctl_console - ioctls for console terminal and virtual consoles

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals and virtual con-
soles. Each operation requires a third argument, assumed here to be argp.

KDGETLED
Get state of LEDs. argp points to a char. The lower three bits of *argp are set to the state of
the LEDs, as follows:
LED_CAP 0x04 caps lock led
LED _NUM 0x02 num lock led
LED_SCR 0x01 scroll lock led

KDSETLED
Set the LEDs. The LEDs are set to correspond to the lower three bits of the unsigned long in-
teger in argp. However, if a higher order bit is set, the LEDs revert to normal: displaying the
state of the keyboard functions of caps lock, num lock, and scroll lock.

Before Linux 1.1.54, the LEDs just reflected the state of the corresponding keyboard flags, and KD-
GETLED/KDSETLED would also change the keyboard flags. Since Linux 1.1.54 the LEDs can be
made to display arbitrary information, but by default they display the keyboard flags. The following
two ioctls are used to access the keyboard flags.

KDGKBLED
Get keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp points to a char which
is set to the flag state. The low order three bits (mask 0x7) get the current flag state, and the
low order bits of the next nibble (mask 0x70) get the default flag state. (Since Linux 1.1.54.)

KDSKBLED
Set keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp is an unsigned long in-
teger that has the desired flag state. The low order three bits (mask 0x7) have the flag state,
and the low order bits of the next nibble (mask 0x70) have the default flag state. (Since Linux

1.1.54))
KDGKBTYPE

Get keyboard type. This returns the value KB_101, defined as 0x02.
KDADDIO

Add 1/0O port as valid. Equivalent to ioperm(arg,1,1).
KDDELIO

Delete 1/0 port as valid. Equivalent to ioperm(arg,1,0).
KDENABIO

Enable 1/0 to video board. Equivalent to ioperm(0x3b4, 0x3df—0x3b4+1, 1).
KDDISABIO

Disable 1/0 to video board. Equivalent to ioperm(0x3b4, 0x3df—0x3b4+1, 0).
KDSETMODE

Set text/graphics mode. argp is an unsigned integer containing one of:

KD_TEXT 0x00

KD_GRAPHICS 0x01
KDGETMODE

Get text/graphics mode. argp points to an int which is set to one of the values shown above
for KDSETMODE.

KDMKTONE
Generate tone of specified length. The lower 16 bits of the unsigned long integer in argp
specify the period in clock cycles, and the upper 16 bits give the duration in msec. If the dura-
tion is zero, the sound is turned off. Control returns immediately. For example, argp =
(125<<16) + 0x637 would specify the beep normally associated with a ctrl-G. (Thus since
Linux 0.99pl1; broken in Linux 2.1.49-50.)

Linux man-pages 6.7 2024-03-03 1

ioctl_console(2) System Calls Manual ioctl_console(2)

KIOCSOUND
Start or stop sound generation. The lower 16 bits of argp specify the period in clock cycles
(that is, argp = 1193180/frequency). argp = 0 turns sound off. In either case, control returns
immediately.

GIO_CMAP
Get the current default color map from kernel. argp points to a 48-byte array. (Since Linux
1.3.3)

PIO_CMAP
Change the default text-mode color map. argp points to a 48-byte array which contains, in or-
der, the Red, Green, and Blue values for the 16 available screen colors: 0 is off, and 255 is full
intensity. The default colors are, in order: black, dark red, dark green, brown, dark blue, dark
purple, dark cyan, light grey, dark grey, bright red, bright green, yellow, bright blue, bright
purple, bright cyan, and white. (Since Linux 1.3.3.)

GIO_FONT
Gets 256-character screen font in expanded form. argp points to an 8192-byte array. Fails
with error code EINVAL if the currently loaded font is a 512-character font, or if the console
is not in text mode.

GIO_FONTX
Gets screen font and associated information. argp points to a struct consolefontdesc (see
P1O_FONTX). On call, the charcount field should be set to the maximum number of charac-
ters that would fit in the buffer pointed to by chardata. On return, the charcount and
charheight are filled with the respective data for the currently loaded font, and the chardata
array contains the font data if the initial value of charcount indicated enough space was avail-
able; otherwise the buffer is untouched and errno is set to ENOMEM. (Since Linux 1.3.1.)

PIO_FONT
Sets 256-character screen font. Load font into the EGA/VGA character generator. argp
points to an 8192-byte map, with 32 bytes per character. Only the first N of them are used for
an 8xN font (0 < N <= 32). This call also invalidates the Unicode mapping.

PIO_FONTX
Sets screen font and associated rendering information. argp points to a

struct consolefontdesc {
unsigned short charcount; /* characters in font
(256 or 512) */
unsigned short charheight; /* scan lines per
character (1-32) */
char *chardata; /* font data in
expanded form */
}:
If necessary, the screen will be appropriately resized, and SIGWINCH sent to the appropriate
processes. This call also invalidates the Unicode mapping. (Since Linux 1.3.1.)

PIO_FONTRESET
Resets the screen font, size, and Unicode mapping to the bootup defaults. argp is unused, but
should be set to NULL to ensure compatibility with future versions of Linux. (Since Linux
1.3.28.)

GIO_SCRNMAP
Get screen mapping from kernel. argp points to an area of size E_TABSZ, which is loaded
with the font positions used to display each character. This call is likely to return useless in-
formation if the currently loaded font is more than 256 characters.

GIO_UNISCRNMAP
Get full Unicode screen mapping from Kkernel. argp points to an area of size
E_TABSZ*sizeof(unsigned short), which is loaded with the Unicodes each character represent.
A special set of Unicodes, starting at U+F000, are used to represent "direct to font" mappings.
(Since Linux 1.3.1.)

Linux man-pages 6.7 2024-03-03 2

ioctl_console(2) System Calls Manual ioctl_console(2)

PIO_SCRNMAP
Loads the "user definable™ (fourth) table in the kernel which maps bytes into console screen
symbols. argp points to an area of size E_TABSZ.

PIO_UNISCRNMAP
Loads the "user definable” (fourth) table in the kernel which maps bytes into Unicodes, which
are then translated into screen symbols according to the currently loaded Unicode-to-font map.
Special Unicodes starting at U+F000 can be used to map directly to the font symbols. (Since
Linux 1.3.1.)

GIO_UNIMAP
Get Unicode-to-font mapping from kernel. argp points to a

struct unimapdesc {
unsigned short entry ct;
struct unipair *entries;
}:
where entries points to an array of

struct unipair {
unsigned short unicode;
unsigned short fontpos;
}:
(Since Linux 1.1.92.)

PIO_UNIMAP
Put unicode-to-font mapping in kernel. argp points to a struct unimapdesc. (Since Linux
1.1.92)

PIO_UNIMAPCLR
Clear table, possibly advise hash algorithm. argp points to a

struct unimapinit {
unsigned short advised_hashsize; /* O if no opinion */
unsigned short advised_hashstep; /* O if no opinion */
unsigned short advised_hashlevel; /7* O if no opinion */

}:
(Since Linux 1.1.92.)
KDGKBMODE
Gets current keyboard mode. argp points to a long which is set to one of these:
K_RAW 0x00 /* Raw (scancode) mode */
K_XLATE 0x01 /* Translate keycodes using keymap */
K_MEDIUMRAW 0x02 /* Medium raw (scancode) mode */
K_UNICODE 0x03 /* Unicode mode */
K_OFF 0x04 /* Disabled mode; since Linux 2.6.39 */
KDSKBMODE
Sets current keyboard mode. argp is a long equal to one of the values shown for KDGKB-
MODE.
KDGKBMETA

Gets meta key handling mode. argp points to a long which is set to one of these:
K_METABIT 0x03 set high order bit
K_ESCPREFIX 0x04 escape prefix

KDSKBMETA
Sets meta key handling mode. argp is a long equal to one of the values shown above for
KDGKBMETA.

KDGKBENT
Gets one entry in key translation table (keycode to action code). argp points to a

struct kbentry {
unsigned char kb_table;

Linux man-pages 6.7 2024-03-03 3

ioctl_console(2) System Calls Manual ioctl_console(2)

unsigned char kb_index;
unsigned short kb_value;

}:
with the first two members filled in: kb_table selects the key table (0 <= kb_table <
MAX_NR_KEYMAPS), and kb_index is the keycode (0 <= kb_index < NR_KEYS).
kb_value is set to the corresponding action code, or K_HOLE if there is no such key, or
K_NOSUCHMAP if kb_table is invalid.
KDSKBENT
Sets one entry in translation table. argp points to a struct kbentry.

KDGKBSENT
Gets one function key string. argp points to a

struct kbsentry {
unsigned char kb_func;
unsigned char kb_string[512];
}:
kb_string is set to the (null-terminated) string corresponding to the kb_functh function key ac-
tion code.

KDSKBSENT
Sets one function key string entry. argp points to a struct kbsentry.

KDGKBDIACR
Read kernel accent table. argp points to a

struct kbdiacrs {
unsigned int kb_cnt;
struct kbdiacr kbdiacr[256];
}:
where kb_cnt is the number of entries in the array, each of which is a

struct kbdiacr {
unsigned char diacr;
unsigned char base;
unsigned char result;

}:
KDGETKEYCODE
Read kernel keycode table entry (scan code to keycode). argp points to a

struct kbkeycode {
unsigned int scancode;
unsigned int keycode;

}:
keycode is set to correspond to the given scancode. (89 <= scancode <= 255 only. For 1 <=
scancode <= 88, keycode==scancode.) (Since Linux 1.1.63.)

KDSETKEYCODE
Write kernel keycode table entry. argp points to a struct kbkeycode. (Since Linux 1.1.63.)

KDSIGACCEPT
The calling process indicates its willingness to accept the signal argp when it is generated by
pressing an appropriate key combination. (1 <= argp <= NSIG). (See spawn_console() in
linux/drivers/char/keyboard.c.)

VT_OPENQRY
Returns the first available (non-opened) console. argp points to an int which is set to the num-
ber of the vt (1 <=*argp <= MAX_NR_CONSOLES).

VT_GETMODE
Get mode of active vt. argp points to a

Linux man-pages 6.7 2024-03-03 4

ioctl_console(2) System Calls Manual ioctl_console(2)

struct vt_mode {
char mode; /* vt mode */
char waitv; /* if set, hang on writes if not active */
short relsig; /* signal to raise on release op */
short acqsig; /* signal to raise on acquisition */
short frsig; /* unused (set to 0) */

};
which is set to the mode of the active vt. mode is set to one of these values:
VT_AUTO auto vt switching

VT_PROCESS process controls switching
VT_ACKACQ acknowledge switch

VT_SETMODE
Set mode of active vt. argp points to a struct vt_mode.

VT_GETSTATE
Get global vt state info. argp points to a

struct vt_stat {
unsigned short v_active; /* active vt */
unsigned short v_signal; /* signal to send */
unsigned short v_state; /* vt bit mask */

}:
For each vt in use, the corresponding bit in the v_state member is set. (Linux 1.0 through
Linux 1.1.92.)

VT_RELDISP
Release a display.

VT_ACTIVATE
Switch to vt argp (1 <= argp <= MAX_NR_CONSOLES)

VT_WAITACTIVE
Wait until vt argp has been activated.

VT_DISALLOCATE
Deallocate the memory associated with vt argp. (Since Linux 1.1.54.)

VT_RESIZE
Set the kernel’s idea of screensize. argp points to a

struct vt_sizes {

unsigned short v_rows; /* # rows */
unsigned short v_cols; /* # columns */
unsigned short v_scrollsize; /7* no longer used */
}:
Note that this does not change the videomode. See resizecons(8)(Since Linux 1.1.54.)
VT_RESIZEX

Set the kernel’s idea of various screen parameters. argp points to a

struct vt_consize {

unsigned short v_rows; /* number of rows */

unsigned short v_cols; /* number of columns */

unsigned short v_vlin; /* number of pixel rows
on screen */

unsigned short v_clin; /* number of pixel rows
per character */

unsigned short v_vcol; /* number of pixel columns
on screen */

unsigned short v_ccol; /* number of pixel columns
per character */

Linux man-pages 6.7 2024-03-03 5

ioctl_console(2) System Calls Manual ioctl_console(2)

Any parameter may be set to zero, indicating "no change", but if multiple parameters are set,
they must be self-consistent. Note that this does not change the videomode. See resize-
cons(8)(Since Linux 1.3.3.)

The action of the following ioctls depends on the first byte in the struct pointed to by argp, referred to
here as the subcode. These are legal only for the superuser or the owner of the current terminal. Sym-
bolic subcodes are available in <linux/tiocl.h> since Linux 2.5.71.

TIOCLINUX, subcode=0
Dump the screen. Disappeared in Linux 1.1.92. (With Linux 1.1.92 or later, read from
/dev/vcsN or /dev/vesaN instead.)

TIOCLINUX, subcode=1
Get task information. Disappeared in Linux 1.1.92.

TIOCLINUX, subcode=TIOCL_SETSEL
Set selection. argp pointsto a

struct {
char subcode;
short xs, ys, xe, ye;
short sel _mode;
}:
xs and ys are the starting column and row. xe and ye are the ending column and row. (Upper
left corner is row=column=1.) sel_mode is 0 for character-by-character selection, 1 for word-
by-word selection, or 2 for line-by-line selection. The indicated screen characters are high-
lighted and saved in a kernel buffer.

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capability.

TIOCLINUX, subcode=TIOCL_PASTESEL
Paste selection. The characters in the selection buffer are written to fd.

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capability.

TIOCLINUX, subcode=TIOCL_UNBLANKSCREEN
Unblank the screen.

TIOCLINUX, subcode=TIOCL_SELLOADLUT
Sets contents of a 256-bit look up table defining characters in a "word", for word-by-word se-
lection. (Since Linux 1.1.32.)

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capability.

TIOCLINUX, subcode=TIOCL_GETSHIFTSTATE
argp points to a char which is set to the value of the kernel variable shift_state. (Since Linux
1.1.32)

TIOCLINUX, subcode=TIOCL_GETMOUSEREPORTING
argp points to a char which is set to the value of the kernel variable report_mouse. (Since
Linux 1.1.33.)

TIOCLINUX, subcode=8
Dump screen width and height, cursor position, and all the character-attribute pairs. (Linux
1.1.67 through Linux 1.1.91 only. With Linux 1.1.92 or later, read from /dev/vcsa* instead.)

TIOCLINUX, subcode=9
Restore screen width and height, cursor position, and all the character-attribute pairs. (Linux
1.1.67 through Linux 1.1.91 only. With Linux 1.1.92 or later, write to /dev/vcsa* instead.)

TIOCLINUX, subcode=TIOCL_SETVESABLANK
Handles the Power Saving feature of the new generation of monitors. VESA screen blanking
mode is set to argp[1], which governs what screen blanking does:

0 Screen blanking is disabled.

1 The current video adapter register settings are saved, then the controller is pro-
grammed to turn off the vertical synchronization pulses. This puts the monitor into
"standby" mode. If your monitor has an Off _Mode timer, then it will eventually

Linux man-pages 6.7 2024-03-03 6

ioctl_console(2) System Calls Manual ioctl_console(2)

power down by itself.

2 The current settings are saved, then both the vertical and horizontal synchronization
pulses are turned off. This puts the monitor into "off" mode. If your monitor has no
Off_Mode timer, or if you want your monitor to power down immediately when the
blank_timer times out, then you choose this option. (Caution: Powering down fre-
quently will damage the monitor.) (Since Linux 1.1.76.)

TIOCLINUX, subcode=TIOCL_SETKMSGREDIRECT
Change target of kernel messages ("console™): by default, and if this is set to 0, messages are

written to the currently active VT. The VT to write to is a single byte following subcode.
(Since Linux 2.5.36.)

TIOCLINUX, subcode=TIOCL_GETFGCONSOLE
Returns the number of VT currently in foreground. (Since Linux 2.5.36.)

TIOCLINUX, subcode=TIOCL_SCROLLCONSOLE
Scroll the foreground VT by the specified amount of lines down, or half the screen if 0. lines
is *(((int32_t *)&subcode) + 1). (Since Linux 2.5.67.)

TIOCLINUX, subcode=TIOCL_BLANKSCREEN
Blank the foreground VT, ignoring "pokes™" (typing): can only be unblanked explicitly (by
switching VTs, to text mode, etc.). (Since Linux 2.5.71.)

TIOCLINUX, subcode=TIOCL_BLANKEDSCREEN
Returns the number of VT currently blanked, O if none. (Since Linux 2.5.71.)

TIOCLINUX, subcode=16
Never used.

TIOCLINUX, subcode=TIOCL_GETKMSGREDIRECT
Returns target of kernel messages. (Since Linux 2.6.17.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, —1 is returned, and errno is set to indi-
cate the error.

ERRORS
EBADF
The file descriptor is invalid.
EINVAL
The file descriptor or argp is invalid.
ENOTTY
The file descriptor is not associated with a character special device, or the specified operation
does not apply to it.
EPERM
Insufficient permission.
NOTES

Warning: Do not regard this man page as documentation of the Linux console ioctls. This is provided
for the curious only, as an alternative to reading the source. loctl’s are undocumented Linux internals,
liable to be changed without warning. (And indeed, this page more or less describes the situation as of
kernel version 1.1.94; there are many minor and not-so-minor differences with earlier versions.)

Very often, ioctls are introduced for communication between the kernel and one particular well-known
program (fdisk, hdparm, setserial, tunelp, loadkeys, selection, setfont, etc.), and their behavior will be
changed when required by this particular program.

Programs using these ioctls will not be portable to other versions of UNIX, will not work on older ver-
sions of Linux, and will not work on future versions of Linux.

Use POSIX functions.

SEE ALSO
dumpkeys(1), kbd_mode(1), loadkeys(1), mknod(1), setleds(1), setmetamode(l), execve(2), fcntl(2),
ioctl_tty(2), ioperm(2), termios(3), console_codes(4), mt(4), sd(4), tty(4), ttyS(4), vcs(4), vcsa(4),

Linux man-pages 6.7 2024-03-03 7

ioctl_console(2) System Calls Manual ioctl_console(2)

charsets(7), mapscrn(8), resizecons(8), setfont(8)

Jusr/include/linux/kd.h, /usr/include/linux/vt.h

Linux man-pages 6.7 2024-03-03 8

ioctl_fat(2) System Calls Manual ioctl_fat(2)

NAME

ioctl_fat — manipulating the FAT filesystem
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/msdos_fs.h> /* Definition of [V]FAT_* and
ATTR_* constants*/**
#include <sys/ioctl.h>

int ioctl(int fd, FAT_IOCTL_GET_ATTRIBUTES, uint32_t *attr);
int ioctl(int fd, FAT_IOCTL_SET_ATTRIBUTES, uint32_t *attr);
int ioctl(int fd, FAT_IOCTL_GET_VOLUME_ID, uint32_t *id);
int ioctl(int fd, VFAT_IOCTL_READDIR_BOTH,

struct __ fat_dirent entry[2]);
int ioctl(int fd, VFAT_IOCTL_READDIR_SHORT,

struct __ fat_dirent entry[2]);

DESCRIPTION
The ioctl(2) system call can be used to read and write metadata of FAT filesystems that are not accessi-
ble using other system calls.

Reading and setting file attributes
Files and directories in the FAT filesystem possess an attribute bit mask that can be read with
FAT_IOCTL_GET_ATTRIBUTES and written with FAT_IOCTL_SET_ATTRIBUTES.

The fd argument contains a file descriptor for a file or directory. It is sufficient to create the file de-
scriptor by calling open(2) with the O_RDONLY flag.

The attr argument contains a pointer to a bit mask. The bits of the bit mask are:

ATTR_RO
This bit specifies that the file or directory is read-only.

ATTR_HIDDEN
This bit specifies that the file or directory is hidden.

ATTR_SYS
This bit specifies that the file is a system file.

ATTR_VOLUME
This bit specifies that the file is a volume label. This attribute is read-only.

ATTR_DIR
This bit specifies that this is a directory. This attribute is read-only.

ATTR_ARCH
This bit indicates that this file or directory should be archived. It is set when a file is created
or modified. It is reset by an archiving system.

The zero value ATTR_NONE can be used to indicate that no attribute bit is set.

Reading the volume ID
FAT filesystems are identified by a wvolume ID. The volume ID can be read with
FAT_IOCTL_GET_VOLUME_ID.

The fd argument can be a file descriptor for any file or directory of the filesystem. It is sufficient to
create the file descriptor by calling open(2) with the O_RDONLY flag.

The id argument is a pointer to the field that will be filled with the volume ID. Typically the volume ID
is displayed to the user as a group of two 16-bit fields:

printf(""'Volume ID %04x-%04x\n', id >> 16, id & OXFFFF);

Reading short filenames of a directory
A file or directory on a FAT filesystem always has a short filename consisting of up to 8 capital letters,
optionally followed by a period and up to 3 capital letters for the file extension. If the actual filename
does not fit into this scheme, it is stored as a long filename of up to 255 UTF-16 characters.

The short filenames in a directory can be read with VFAT_IOCTL_READDIR_SHORT.

Linux man-pages 6.7 2023-10-31 1

ioctl_fat(2) System Calls Manual ioctl_fat(2)

VFAT_IOCTL_READDIR_BOTH reads both the short and the long filenames.

The fd argument must be a file descriptor for a directory. It is sufficient to create the file descriptor by
calling open(2) with the O_RDONLY flag. The file descriptor can be used only once to iterate over the
directory entries by calling ioctl(2) repeatedly.

The entry argument is a two-element array of the following structures:

struct __ fat _dirent {
long d_ino;
__kernel _off_t d _off;
uint32_t short d_reclen;
char d_name[256];
}:
The first entry in the array is for the short filename. The second entry is for the long filename.

The d_ino and d_off fields are filled only for long filenames. The d_ino field holds the inode number
of the directory. The d_off field holds the offset of the file entry in the directory. As these values are
not available for short filenames, the user code should simply ignore them.

The field d_reclen contains the length of the filename in the field d_name. To keep backward compati-
bility, a length of 0 for the short filename signals that the end of the directory has been reached. How-
ever, the preferred method for detecting the end of the directory is to test the ioctl(2) return value. If no
long filename exists, field d_reclen is set to 0 and d_name is a character string of length 0 for the long
filename.

RETURN VALUE
On error, =1 is returned, and errno is set to indicate the error.

For VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READDIR_SHORT a return value of 1
signals that a new directory entry has been read and a return value of 0 signals that the end of the direc-
tory has been reached.

ERRORS
ENOENT
This error is returned by VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READ-
DIR_SHORT if the file descriptor fd refers to a removed, but still open directory.

ENOTDIR
This error is returned by VFAT_IOCTL_READDIR_BOTH and VFAT_IOCTL_READ-
DIR_SHORT if the file descriptor fd does not refer to a directory.

ENOTTY
The file descriptor fd does not refer to an object in a FAT filesystem.

For further error values, see ioctl(2).

STANDARDS
Linux.

HISTORY
VFAT _IOCTL_READDIR_BOTH
VFAT _IOCTL_READDIR_SHORT
Linux 2.0.

FAT IOCTL_GET ATTRIBUTES
FAT IOCTL_SET ATTRIBUTES
Linux 2.6.12.

FAT IOCTL_GET VOLUME_ID
Linux 3.11.

EXAMPLES
Toggling the archive flag
The following program demonstrates the usage of ioctl(2) to manipulate file attributes. The program
reads and displays the archive attribute of a file. After inverting the value of the attribute, the program
reads and displays the attribute again.

Linux man-pages 6.7 2023-10-31 2

ioctl_fat(2)

System Calls Manual ioctl_fat(2)

The following was recorded when applying the program for the file /mnt/user/foo:

./toggle_fat_archive_flag /mnt/user/foo
Archive flag is set

Toggling archive flag

Archive flag is not set

Program source (toggle_fat_archive_flag.c)

#include <fcntl.h>

#include <linux/msdos_fs.h>
#include <stdint._h>
#include <stdio.h>

#include <stdlib.h>
#include <sys/ioctl_h>
#include <unistd.h>

/*

* Read file attributes of a file on a FAT Filesystem.
* Qutput the state of the archive flag.

*/

static uint32_t
readattr(int fd)

{

}

int

int ret;
uint32_t attr;

ret = ioctl(fd, FAT_IOCTL_GET_ATTRIBUTES, &attr);
if (ret == -1) {

perror(ioctl');

exit(EXIT_FAILURE);
3

if (attr & ATTR_ARCH)

printf("'Archive flag is set\n");
else

printf("’'Archive flag is not set\n");

return attr;

main(int argc, char *argv[])

{

int Td;
int ret;
uint32_t attr;

if (argc 1= 2) {
printf('Usage: %s FILENAME\n", argv[O]);
exit(EXIT_FAILURE);

3
fd = open(argv[1l], O _RDONLY);
if (fd == -1) {
perror('open™);
exit(EXIT_FAILURE);

/*

Linux man-pages 6.7 2023-10-31 3

ioctl_fat(2)

* R
*/
attr

/*

* 1
*/
prin
attr

/*

System Calls Manual ioctl_fat(2)

ead and display the FAT file attributes.

= readattr(fd);

nvert archive attribute.

tFf("'Toggling archive flag\n');
~= ATTR_ARCH;

* Write the changed FAT file attributes.

*/
ret
if (

}

/*

* R
*/
read

clos

exit

}

= ioctl(fd, FAT_IOCTL_SET ATTRIBUTES, &attr);
ret == -1) {

perror(ioctl');

exit(EXIT_FAILURE);

ead and display the FAT file attributes.
attr(fd);
e(fd);

(EX1T_SUCCESS);

Reading the volume ID
The following program demonstrates the use of ioctl(2) to display the volume ID of a FAT filesystem.

The following output was recorded when applying the program for directory /mnt/user:

$./display_fat _volume_id /mnt/user
Volume ID 6443-6241

Program source

#include
#include
#include
#include
#include
#include
#include

int

main(int

{ -
int
int
uint

if (
}
fd
i

Linux man-pages 6.7

(display_fat_volume_id.c)

<fentl . h>
<linux/msdos_fs.h>
<stdint.h>
<stdio.h>
<stdlib.h>
<sys/ioctl_h>
<unistd.h>

argc, char *argv[])
Td;
ret;
32 t id;
argc 1= 2) {

printf('Usage: %s FILENAME\n", argv[O]);
exit(EXIT_FAILURE);

open(argv[1l], O _RDONLY);

£ (Fd == -1) {

2023-10-31 4

ioctl_fat(2)

}

System Calls Manual ioctl_fat(2)

perror('open™);
exit(EXIT_FAILURE);
b

/*
* Read volume 1ID.
*/
ret = ioctl(fd, FAT_IOCTL_GET_VOLUME_ID, &id);
if (ret == -1) {
perror(ioctl');
exit(EXIT_FAILURE);
}

/*

* Format the output as two groups of 16 bits each.

*/

printf('Volume ID %04x-%04x\n', id >> 16, id & OXFFFF);
close(fd);

exit(EXIT_SUCCESS);

Listing a directory
The following program demonstrates the use of ioctl(2) to list a directory.

The following was recorded when applying the program to the directory /mnt/user:

$./fat_dir /mnt/user
L=> 0T

.. >
ALONGF~1.TXT —> "a long filename.txt"
UPPER.TXT —> **

LOWER.TXT —> "lower.txt"

Program source

#include <fcntl._h>

#include <linux/msdos_ fs._h>
#include <stdio.h>

#include <stdlib.h>
#include <sys/ioctl_h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
int fd;
int ret;

struct _ fat _dirent entry[2];

if (argc 1= 2) {
printf("'Usage: %s DIRECTORY\n", argv[0]);
exit(EXIT_FAILURE);

}

/*

* Open file descriptor for the directory.
*/

fd open(argv[1l], O _RDONLY | O_DIRECTORY);

if Ef = -1) {
perror('open™);

Linux man-pages 6.7 2023-10-31 5

ioctl_fat(2) System Calls Manual ioctl_fat(2)

exit(EXIT_FAILURE);

}
for (55) {
/*
* Read next directory entry.
*/
ret = ioctl(fd, VFAT_IOCTL_READDIR_BOTH, entry);
/*
* 1T an error occurs, the return value is -1.
* 1f the end of the directory list has been reached,
* the return value is O.
* For backward compatibility the end of the directory
* list is also signaled by d_reclen ==
*/
if (ret < 1)
break;
/*
* Write both the short name and the long name.
*/
printf(""%s —> "%s"\n", entry[0].d_name, entry[1].d_name);
}
it (ret == -1) {
perror (""VFAT_IOCTL_READDIR_BOTH"™);
exit(EXIT_FAILURE);
}
/*
* Close the file descriptor.
*/
close(fd);
exiTt(EXIT_SUCCESS);
}
SEE ALSO
ioctl(2)

Linux man-pages 6.7 2023-10-31

ioctl_ficlonerange(2) System Calls Manual ioctl_ficlonerange(2)

NAME

ioctl_ficlonerange, ioctl_ficlone — share some the data of one file with another file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/fs.h> /* Definition of FICLONE* constants */
#include <sys/ioctl.h>

int ioctl(int dest_fd, FICLONERANGE, struct file_clone_range *arg);
int ioctl(int dest_fd, FICLONE, int src_fd);

DESCRIPTION
If a filesystem supports files sharing physical storage between multiple files ("reflink™), this ioctl(2) op-
eration can be used to make some of the data in the src_fd file appear in the dest_fd file by sharing the
underlying storage, which is faster than making a separate physical copy of the data. Both files must
reside within the same filesystem. If a file write should occur to a shared region, the filesystem must
ensure that the changes remain private to the file being written. This behavior is commonly referred to
as "copy on write".

This ioctl reflinks up to src_length bytes from file descriptor src_fd at offset src_offset into the file
dest_fd at offset dest_offset, provided that both are files. If src_length is zero, the ioctl reflinks to the
end of the source file. This information is conveyed in a structure of the following form:

struct file_clone_range {
__s64 src_fd;
__ub4 src_offset;
__u6b4 src_length;
___ub4 dest offset;

}:
Clones are atomic with regards to concurrent writes, so no locks need to be taken to obtain a consistent
cloned copy.
The FICLONE ioctl clones entire files.

RETURN VALUE
On error, =1 is returned, and errno is set to indicate the error.

ERRORS
Error codes can be one of, but are not limited to, the following:

EBADF
src_fd is not open for reading; dest_fd is not open for writing or is open for append-only
writes; or the filesystem which src_fd resides on does not support reflink.

EINVAL
The filesystem does not support reflinking the ranges of the given files. This error can also ap-
pear if either file descriptor represents a device, FIFO, or socket. Disk filesystems generally
require the offset and length arguments to be aligned to the fundamental block size. XFS and
Btrfs do not support overlapping reflink ranges in the same file.

EISDIR
One of the files is a directory and the filesystem does not support shared regions in directories.

EOPNOTSUPP
This can appear if the filesystem does not support reflinking either file descriptor, or if either
file descriptor refers to special inodes.

EPERM
dest_fd is immutable.

ETXTBSY
One of the files is a swap file. Swap files cannot share storage.

EXDEV
dest_fd and src_fd are not on the same mounted filesystem.

Linux man-pages 6.7 2023-10-31 1

ioctl_ficlonerange(2) System Calls Manual ioctl_ficlonerange(2)

STANDARDS
Linux.

HISTORY
Linux 4.5.

They were previously known as BTRFS_IOC_CLONE and BTRFS_IOC_CLONE_RANGE, and
were private to Btrfs.

NOTES
Because a copy-on-write operation requires the allocation of new storage, the fallocate(2) operation
may unshare shared blocks to guarantee that subsequent writes will not fail because of lack of disk
space.

SEE ALSO
ioctl(2)

Linux man-pages 6.7 2023-10-31 2

ioctl_fideduperange(2) System Calls Manual ioctl_fideduperange(2)

NAME

ioctl_fideduperange — share some the data of one file with another file
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/fs.h> /* Definition of FIDEDUPERANGE and
FILE_DEDUPE_* constants*/
#include <sys/ioctl.h>

int ioctl(int src_fd, FIDEDUPERANGE, struct file_dedupe_range *arg);

DESCRIPTION
If a filesystem supports files sharing physical storage between multiple files, this ioctl(2) operation can
be used to make some of the data in the src_fd file appear in the dest_fd file by sharing the underlying
storage if the file data is identical ("deduplication™). Both files must reside within the same filesystem.
This reduces storage consumption by allowing the filesystem to store one shared copy of the data. If a
file write should occur to a shared region, the filesystem must ensure that the changes remain private to
the file being written. This behavior is commonly referred to as “copy on write".

This ioctl performs the "compare and share if identical” operation on up to src_length bytes from file
descriptor src_fd at offset src_offset. This information is conveyed in a structure of the following form:

struct file_dedupe_range {
__ub4 src_offset;
__u6b4 src_length;
__ul6 dest_count;
__ul6 reservedl;
_Uu32 reserved2;
struct file _dedupe_range_info info[0];
}:
Deduplication is atomic with regards to concurrent writes, so no locks need to be taken to obtain a con-
sistent deduplicated copy.

The fields reservedl and reserved2 must be zero.

Destinations for the deduplication operation are conveyed in the array at the end of the structure. The
number of destinations is given in dest_count, and the destination information is conveyed in the fol-
lowing form:

struct file_dedupe_range_info {
__s64 dest fd;
___ub4 dest offset;
__u64 bytes_ deduped;
__S32 status;
__Uu32 reserved;
}:
Each deduplication operation targets src_length bytes in file descriptor dest_fd at offset dest offset.
The field reserved must be zero. During the call, src_fd must be open for reading and dest_fd must be
open for writing. The combined size of the struct file dedupe range and the struct
file_dedupe_range_info array must not exceed the system page size. The maximum size of src_length
is filesystem dependent and is typically 16 MiB. This limit will be enforced silently by the filesystem.
By convention, the storage used by src_fd is mapped into dest_fd and the previous contents in dest_fd
are freed.

Upon successful completion of this ioctl, the number of bytes successfully deduplicated is returned in
bytes_deduped and a status code for the deduplication operation is returned in status. If even a single
byte in the range does not match, the deduplication operation request will be ignored and status set to
FILE_DEDUPE_RANGE_DIFFERS. The status code is set to FILE_DEDUPE_RANGE_SAME
for success, a negative error code in case of error, or FILE_DEDUPE_RANGE_DIFFERS if the data
did not match.

Linux man-pages 6.7 2024-03-03 1

ioctl_fideduperange(2) System Calls Manual ioctl_fideduperange(2)

RETURN VALUE

On error, =1 is returned, and errno is set to indicate the error.

ERRORS

Possible errors include (but are not limited to) the following:

EBADF
src_fd is not open for reading; dest fd is not open for writing or is open for append-only
writes; or the filesystem which src_fd resides on does not support deduplication.

EINVAL
The filesystem does not support deduplicating the ranges of the given files. This error can also
appear if either file descriptor represents a device, FIFO, or socket. Disk filesystems generally
require the offset and length arguments to be aligned to the fundamental block size. Neither
Btrfs nor XFS support overlapping deduplication ranges in the same file.

EISDIR
One of the files is a directory and the filesystem does not support shared regions in directories.

ENOMEM
The kernel was unable to allocate sufficient memory to perform the operation or dest_count is
so large that the input argument description spans more than a single page of memory.

EOPNOTSUPP
This can appear if the filesystem does not support deduplicating either file descriptor, or if ei-
ther file descriptor refers to special inodes.

EPERM
dest_fd is immutable.

ETXTBSY
One of the files is a swap file. Swap files cannot share storage.

EXDEV
dest_fd and src_fd are not on the same mounted filesystem.

VERSIONS

Some filesystems may limit the amount of data that can be deduplicated in a single call.

STANDARDS

Linux.

HISTORY

Linux 4.5.
It was previously known as BTRFS_10C_FILE_EXTENT_SAME and was private to Btrfs.

NOTES

Because a copy-on-write operation requires the allocation of new storage, the fallocate(2) operation
may unshare shared blocks to guarantee that subsequent writes will not fail because of lack of disk
space.

SEE ALSO

ioctl(2)

Linux man-pages 6.7 2024-03-03 2

ioctl_fslabel (2) System Calls Manual ioctl_fslabel (2)

NAME

ioctl_fslabel — get or set a filesystem label
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/fs.h> /* Definition of *FSLABEL* constants */
#include <sys/ioctl.h>

int ioctl(int fd, FS_IOC_GETFSLABEL, char label[FSLABEL_MAX]);
intioctl(int fd, FS_IOC_SETFSLABEL, char label[FSLABEL_MAX]);

DESCRIPTION
If a filesystem supports online label manipulation, these ioctl(2) operations can be used to get or set the

filesystem label for the filesystem on which fd resides. The FS_10OC_SETFSLABEL operation re-
quires privilege (CAP_SYS_ADMIN).

RETURN VALUE
On success zero is returned. On error, —1 is returned, and errno is set to indicate the error.
ERRORS
Possible errors include (but are not limited to) the following:
EFAULT
label references an inaccessible memory area.
EINVAL
The specified label exceeds the maximum label length for the filesystem.
ENOTTY
This can appear if the filesystem does not support online label manipulation.
EPERM
The calling process does not have sufficient permissions to set the label.
STANDARDS
Linux.
HISTORY
Linux 4.18.

They were previously known as BTRFS_IOC_GET_FSLABEL and BTRFS_IOC_SET_FSLABEL
and were private to Btrfs.

NOTES
The maximum string length for this interface is FSLABEL_MAX, including the terminating null byte
(\0"). Filesystems have differing maximum label lengths, which may or may not include the terminat-

ing null. The string provided to FS_IOC_SETFSLABEL must always be null-terminated, and the
string returned by FS_10C_GETFSLABEL will always be null-terminated.

SEE ALSO
ioctl(2), blkid(8)

Linux man-pages 6.7 2023-10-31 1

ioctl_getfsmap(2) System Calls Manual ioctl_getfsmap(2)

NAME

ioctl_getfsmap — retrieve the physical layout of the filesystem
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/fsmap.h> /* Definition of FS_10C_GETFSMAP,
FM?_OF_*, and *FMR_OWN_* constants */
#include <sys/ioctl.h>

int ioctl(int fd, FS_IOC_GETFSMARP, struct fsmap_head * arg);

DESCRIPTION
This ioctl(2) operation retrieves physical extent mappings for a filesystem. This information can be
used to discover which files are mapped to a physical block, examine free space, or find known bad
blocks, among other things.

The sole argument to this operation should be a pointer to a single struct fsmap_head:

struct fsmap {

__u32 fmr_device; /* Device 1D */
__u32 fmr_flags; /* Mapping flags */
__u64 fmr_physical; /* Device offset of segment */
__u64 fmr_owner; /* Owner ID */
__ue4 fmr_offset; /* File offset of segment */
__u64 fmr_length; /* Length of segment */
__u64 fmr_reserved[3]; /* Must be zero */
}:
struct fsmap _head {
__u32 fmh_iflags; /* Control flags */
__u32 fmh_oflags; /* Output flags */
__u32 fmh_count; /* # of entries in array incl. input */
__u32 fmh_entries; /* # of entries filled in (output) */

__u64 fmh_reserved[6]; /* Must be zero */

struct fsmap fmh_keys[2]; /* Low and high keys for
the mapping search */
struct fsmap fmh_recs[]; /* Returned records */
}:

The two fmh_keys array elements specify the lowest and highest reverse-mapping key for which the
application would like physical mapping information. A reverse mapping key consists of the tuple (de-
vice, block, owner, offset). The owner and offset fields are part of the key because some filesystems
support sharing physical blocks between multiple files and therefore may return multiple mappings for
a given physical block.

Filesystem mappings are copied into the fmh_recs array, which immediately follows the header data.

Fields of struct fsmap_head
The fmh_iflags field is a bit mask passed to the kernel to alter the output. No flags are currently de-
fined, so the caller must set this value to zero.

The fmh_oflags field is a bit mask of flags set by the kernel concerning the returned mappings. If
FMH_OF_DEV_T is set, then the fmr_device field represents a dev_t structure containing the major
and minor numbers of the block device.

The fmh_count field contains the number of elements in the array being passed to the kernel. If this
value is 0, fmh_entries will be set to the number of records that would have been returned had the array
been large enough; no mapping information will be returned.

The fmh_entries field contains the number of elements in the fmh_recs array that contain useful infor-
mation.

The fmh_reserved fields must be set to zero.

Linux man-pages 6.7 2024-03-03 1

ioctl_getfsmap(2) System Calls Manual ioctl_getfsmap(2)

Keys

The two key records in fsmap_head.fmh_keys specify the lowest and highest extent records in the key-
space that the caller wants returned. A filesystem that can share blocks between files likely requires the
tuple (device, physical, owner, offset, flags) to uniquely index any filesystem mapping record. Classic
non-sharing filesystems might be able to identify any record with only (device, physical, flags). For
example, if the low key is set to (8:0, 36864, 0, 0, 0), the filesystem will only return records for extents
starting at or above 36 KiB on disk. If the high key is set to (8:0, 1048576, 0, 0, 0), only records below
1 MiB will be returned. The format of fmr_device in the keys must match the format of the same field
in the output records, as defined below. By convention, the field fsmap_head.fmh_keys[0] must con-
tain the low key and fsmap_head.fmh_keys[1] must contain the high key for the operation.

For convenience, if fmr_length is set in the low key, it will be added to fmr_block or fmr_offset as ap-
propriate. The caller can take advantage of this subtlety to set up subsequent calls by copying
fsmap_head.fmh_recs[fsmap_head.fmh_entries — 1] into the low key. The function fsmap_advance
(defined in linux/fsmap.h) provides this functionality.

Fields of struct fsmap
The fmr_device field uniquely identifies the underlying storage device. If the FMH_OF DEV_T flag
is set in the header’s fmh_oflags field, this field contains a dev_t from which major and minor numbers
can be extracted. If the flag is not set, this field contains a value that must be unique for each unique
storage device.

The fmr_physical field contains the disk address of the extent in bytes.

The fmr_owner field contains the owner of the extent. This is an inode number unless
FMR_OF_SPECIAL_OWNER is set in the fmr_flags field, in which case the value is determined by
the filesystem. See the section below about owner values for more details.

The fmr_offset field contains the logical address in the mapping record in bytes. This field has no
meaning if the FMR_OF_SPECIAL_OWNER or FMR_OF_EXTENT_MAP flags are set in
fmr_flags.

The fmr_length field contains the length of the extent in bytes.
The fmr_flags field is a bit mask of extent state flags. The bits are:

FMR_OF_PREALLOC
The extent is allocated but not yet written.

FMR_OF ATTR_FORK
This extent contains extended attribute data.

FMR_OF_EXTENT_MAP
This extent contains extent map information for the owner.

FMR_OF_SHARED
Parts of this extent may be shared.

FMR_OF_SPECIAL_OWNER
The fmr_owner field contains a special value instead of an inode number.

FMR_OF LAST
This is the last record in the data set.

The fmr_reserved field will be set to zero.

Owner values
Generally, the value of the fmr_owner field for non-metadata extents should be an inode number.
However, filesystems are under no obligation to report inode numbers; they may instead report
FMR_OWN_UNKNOWN if the inode number cannot easily be retrieved, if the caller lacks sufficient
privilege, if the filesystem does not support stable inode numbers, or for any other reason. If a filesys-
tem wishes to condition the reporting of inode numbers based on process capabilities, it is strongly
urged that the CAP_SYS_ADMIN capability be used for this purpose.

The following special owner values are generic to all filesystems:

FMR_OWN_FREE
Free space.

Linux man-pages 6.7 2024-03-03 2

ioctl_getfsmap(2) System Calls Manual ioctl_getfsmap(2)

FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

FMR_OWN_METADATA
This extent is filesystem metadata.

XFS can return the following special owner values:

XFS_FMR_OWN_FREE
Free space.

XFS_FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

XFS_FMR_OWN_FS
Static filesystem metadata which exists at a fixed address. These are the AG su-
perblock, the AGF, the AGFL, and the AGI headers.

XFS_FMR_OWN_LOG
The filesystem journal.

XFS_FMR_OWN_AG
Allocation group metadata, such as the free space btrees and the reverse mapping
btrees.

XFS_ FMR_OWN_INOBT
The inode and free inode btrees.

XFS_ FMR_OWN_INODES
Inode records.

XFS_ FMR_OWN_REFC
Reference count information.

XFS_FMR_OWN_COW
This extent is being used to stage a copy-on-write.

XFS_FMR_OWN_DEFECTIVE:
This extent has been marked defective either by the filesystem or the underlying de-
vice.

ext4 can return the following special owner values:

EXT4_FMR_OWN_FREE
Free space.

EXT4_FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

EXT4_FMR_OWN_FS
Static filesystem metadata which exists at a fixed address. This is the superblock and
the group descriptors.

EXT4_FMR_OWN_LOG
The filesystem journal.

EXT4 FMR_OWN_INODES
Inode records.

EXT4_FMR_OWN_BLKBM
Block bit map.

EXT4_FMR_OWN_INOBM
Inode bit map.

RETURN VALUE
On error, =1 is returned, and errno is set to indicate the error.

ERRORS
The error placed in errno can be one of, but is not limited to, the following:

Linux man-pages 6.7 2024-03-03 3

ioctl_getfsmap(2) System Calls Manual ioctl_getfsmap(2)

EBADF
fd is not open for reading.

EBADMSG
The filesystem has detected a checksum error in the metadata.

EFAULT
The pointer passed in was not mapped to a valid memory address.

EINVAL
The array is not long enough, the keys do not point to a valid part of the filesystem, the low
key points to a higher point in the filesystem’s physical storage address space than the high
key, or a nonzero value was passed in one of the fields that must be zero.

ENOMEM
Insufficient memory to process the operation.

EOPNOTSUPP
The filesystem does not support this operation.

EUCLEAN
The filesystem metadata is corrupt and needs repair.

STANDARDS
Linux.

Not all filesystems support it.

HISTORY
Linux 4.12.

EXAMPLES
See io/fsmap.c in the xfsprogs distribution for a sample program.

SEE ALSO
ioctl(2)

Linux man-pages 6.7 2024-03-03 4

ioctl_iflags(2) System Calls Manual ioctl_iflags(2)

NAME

ioctl_iflags — ioctl() operations for inode flags

DESCRIPTION

Various Linux filesystems support the notion of inode flags—attributes that modify the semantics of
files and directories. These flags can be retrieved and modified using two ioctl(2) operations:

int attr;
fd = open(“pathname™, ...);

ioctl(fd, FS_I0C_GETFLAGS, &attr); /* Place current flags
in “attr® */
attr |= FS_NOATIME_FL; /* Tweak returned bit mask */
ioctl(fd, FS_I0C_SETFLAGS, &attr); /* Update flags for inode
referred to by "fd" */

The Isattr(1) and chattr(1) shell commands provide interfaces to these two operations, allowing a user
to view and modify the inode flags associated with a file.

The following flags are supported (shown along with the corresponding letter used to indicate the flag
by Isattr (1) and chattr(1)):

FS_APPEND_FL ‘&'
The file can be opened only with the O_APPEND flag. (This restriction applies even to the
superuser.) Only a privileged process (CAP_LINUX_IMMUTABLE) can set or clear this at-
tribute.

FS_COMPR_FL '¢'
Store the file in a compressed format on disk. This flag is not supported by most of the main-
stream filesystem implementations; one exception is btrfs(5)

FS_DIRSYNC_FL 'D' (since Linux 2.6.0)
Write directory changes synchronously to disk. This flag provides semantics equivalent to the
mount(2) MS_DIRSYNC option, but on a per-directory basis. This flag can be applied only
to directories.

FS_IMMUTABLE_FL 'i'
The file is immutable: no changes are permitted to the file contents or metadata (permissions,
timestamps, ownership, link count, and so on). (This restriction applies even to the superuser.)
Only a privileged process (CAP_LINUX_IMMUTABLE) can set or clear this attribute.

FS_JOURNAL_DATA_FL '
Enable journaling of file data on ext3(5) and ext4(5) filesystems. On a filesystem that is jour-
naling in ordered or writeback mode, a privileged (CAP_SYS_RESOURCE) process can set
this flag to enable journaling of data updates on a per-file basis.

FS_NOATIME_FL 'A’
Don’t update the file last access time when the file is accessed. This can provide I/O perfor-
mance benefits for applications that do not care about the accuracy of this timestamp. This
flag provides functionality similar to the mount(2) MS_NOATIME flag, but on a per-file ba-
sis.

FS_NOCOW_FL 'C' (since Linux 2.6.39)
The file will not be subject to copy-on-write updates. This flag has an effect only on filesys-
tems that support copy-on-write semantics, such as Btrfs. See chattr(1) and btrfs(5)

FS_NODUMP_FL 'd'
Don’t include this file in backups made using dump(8)

FS_NOTAIL_FL 't
This flag is supported only on Reiserfs. It disables the Reiserfs tail-packing feature, which
tries to pack small files (and the final fragment of larger files) into the same disk block as the
file metadata.

FS_PROJINHERIT_FL 'P' (since Linux 4.5)
Inherit the quota project ID. Files and subdirectories will inherit the project 1D of the direc-
tory. This flag can be applied only to directories.

Linux man-pages 6.7 2023-10-31 1

ioctl_iflags(2) System Calls Manual ioctl_iflags(2)

FS_SECRM_FL''s'
Mark the file for secure deletion. This feature is not implemented by any filesystem, since the
task of securely erasing a file from a recording medium is surprisingly difficult.
FS_SYNC_FL'S'
Make file updates synchronous. For files, this makes all writes synchronous (as though all
opens of the file were with the O_SYNC flag). For directories, this has the same effect as the
FS_DIRSYNC_FL flag.
FS_TOPDIR_FL 'T'
Mark a directory for special treatment under the Orlov block-allocation strategy. See chattr(1)

for details. This flag can be applied only to directories and has an effect only for ext2, ext3,
and ext4.

FS_UNRM_FL 'u'
Allow the file to be undeleted if it is deleted. This feature is not implemented by any filesys-
tem, since it is possible to implement file-recovery mechanisms outside the kernel.

In most cases, when any of the above flags is set on a directory, the flag is inherited by files and subdi-
rectories created inside that directory. Exceptions include FS_TOPDIR_FL, which is not inheritable,
and FS_DIRSYNC_FL, which is inherited only by subdirectories.

STANDARDS
Linux.

NOTES
In order to change the inode flags of a file using the FS_1OC_SETFLAGS operation, the effective user
ID of the caller must match the owner of the file, or the caller must have the CAP_FOWNER capabil-

ity.
The type of the argument given to the FS_IOC_GETFLAGS and FS_IOC_SETFLAGS operations is

int *, notwithstanding the implication in the kernel source file include/uapi/linux/fs.h that the argument
is long *.

SEE ALSO
chattr (1), Isattr (1), mount(2), btrfs(5), ext4(5), xfs(5), xattr(7), mount(8)

Linux man-pages 6.7 2023-10-31 2

ioctl_ns(2) System Calls Manual ioctl_ns(2)

NAME
ioctl_ns - ioctl() operations for Linux namespaces

DESCRIPTION
Discovering namespace relationships
The following ioctl(2) operations are provided to allow discovery of namespace relationships (see
user_namespaces(7) and pid_namespaces(7)). The form of the calls is:

new_fd = ioctl(fd, op);
In each case, fd refers to a /proc/ pid/ns/* file. Both operations return a new file descriptor on success.

NS_GET_USERNS (since Linux 4.9)
Returns a file descriptor that refers to the owning user namespace for the namespace referred
to by fd.

NS_GET_PARENT (since Linux 4.9)
Returns a file descriptor that refers to the parent namespace of the namespace referred to by
fd. This operation is valid only for hierarchical namespaces (i.e., PID and user hamespaces).
For user namespaces, NS_GET_PARENT is synonymous with NS_GET_USERNS.

The new file descriptor returned by these operations is opened with the O _RDONLY and
O_CLOEXEC (close-on-exec; see fcntl(2)) flags.

By applying fstat(2) to the returned file descriptor, one obtains a stat structure whose st_dev (resident
device) and st_ino (inode number) fields together identify the owning/parent namespace. This inode
number can be matched with the inode number of another /proc/pid/ns/{pid,user} file to determine
whether that is the owning/parent namespace.

Either of these ioctl(2) operations can fail with the following errors:

EPERM
The requested namespace is outside of the caller’s namespace scope. This error can occur if,
for example, the owning user namespace is an ancestor of the caller’s current user namespace.
It can also occur on attempts to obtain the parent of the initial user or PID namespace.

ENOTTY
The operation is not supported by this kernel version.

Additionally, the NS_GET_PARENT operation can fail with the following error:

EINVAL
fd refers to a nonhierarchical namespace.

See the EXAMPLES section for an example of the use of these operations.

Discovering the namespace type
The NS_GET_NSTYPE operation (available since Linux 4.11) can be used to discover the type of
namespace referred to by the file descriptor fd:

nstype = ioctl(fd, NS_GET _NSTYPE);
fd refers to a /proc/ pid/ns/* file.

The return value is one of the CLONE_NEW?* values that can be specified to clone(2) or unshare(2) in
order to create a namespace.

Discovering the owner of a user namespace
The NS_GET_OWNER_UID operation (available since Linux 4.11) can be used to discover the
owner user 1D of a user namespace (i.e., the effective user 1D of the process that created the user name-
space). The form of the call is:

uid_t uid;
ioctl(fd, NS_GET_OWNER_UID, &uid);

fd refers to a /proc/ pid/ns/user file.
The owner user ID is returned in the uid_t pointed to by the third argument.

This operation can fail with the following error:

Linux man-pages 6.7 2024-03-03 1

ioctl_ns(2) System Calls Manual ioctl_ns(2)

EINVAL
fd does not refer to a user namespace.

ERRORS
Any of the above ioctl() operations can return the following errors:

ENOTTY
fd does not refer to a /proc/ pid/ns/* file.

STANDARDS
Linux.

EXAMPLES
The example shown below uses the ioctl(2) operations described above to perform simple discovery of
namespace relationships. The following shell sessions show various examples of the use of this pro-
gram.

Trying to get the parent of the initial user namespace fails, since it has no parent:

$./ns_show /proc/self/ns/user p
The parent namespace is outside your namespace scope

Create a process running sleep(1) that resides in new user and UTS namespaces, and show that the new
UTS namespace is associated with the new user namespace:

$ unshare -Uu sleep 1000 &

[1] 23235

$./ns_show /proc/23235/ns/uts u

Device/Inode of owning user namespace is: [0,3] /7 4026532448
$ readlink /proc/23235/ns/user

user:[4026532448]

Then show that the parent of the new user namespace in the preceding example is the initial user name-
space:

$ readlink /proc/self/ns/user

user:[4026531837]

$./ns_show /proc/23235/ns/user p

Device/Inode of parent namespace is: [0,3] / 4026531837

Start a shell in a new user namespace, and show that from within this shell, the parent user namespace
can’t be discovered. Similarly, the UTS namespace (which is associated with the initial user name-
space) can’t be discovered.

$ PS1="sh2$ " unshare -U bash

sh2$./ns_show /proc/self/ns/user p

The parent namespace is outside your namespace scope

sh2$./ns_show /proc/self/ns/uts u

The owning user namespace Is outside your namespace scope

Program source
/* ns_show.c

Licensed under the GNU General Public License v2 or later.
*/
#include <errno.h>
#include <fcntl.h>
#include <linux/nsfs.h>
#include <stdint._h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl_h>
#include <sys/stat_h>
#include <sys/sysmacros.h>

Linux man-pages 6.7 2024-03-03 2

ioctl_ns(2) System Calls Manual ioctl_ns(2)

#include <unistd.h>

int

main(int argc, char *argv[])

{
int fd, userns_fd, parent_fd;
struct stat sb;

if (argc < 2) {

fprintf(stderr, "Usage: %s /proc/[pid]/ns/[file] [plu]\n",
argv[0]);

fprintf(stderr, '\nDisplay the result of one or both "
"of NS_GET_USERNS (u) or NS_GET_PARENT (p)\n"
"for the specified /proc/[pid]/ns/[file]. If neither "
""p® nor “u" is specified,\n"
"NS_GET_USERNS is the default.\n");

exit(EXIT_FAILURE);

}

/* Obtain a file descriptor for the "ns” file specified
in argv[1l]. */

fd = open(argv[1l], O _RDONLY);

if (fd == -1) {
perror('open™);
exit(EXIT_FAILURE);

3

/* Obtain a file descriptor for the owning user namespace and
then obtain and display the inode number of that namespace. */

if (argc < 3 || strchr(argv[2], "u®)) {
userns_fd = i1octl(fd, NS_GET_USERNS);

if (userns_fd == -1) {
if (errno == EPERM)
printf("'The owning user namespace is outside
"'your namespace scope\n'');

else
perror("'ioctl-NS_GET_USERNS™);
exit(EXIT_FAILURE);

}

if (fstat(userns_fd, &sb) == -1) {
perror('fstat-userns'™);
exit(EXIT_FAILURE);

}

printf("'Device/Inode of owning user namespace is:
%X, %x] / %ju\n',
major(sb.st _dev),
minor(sb.st_dev),
(uintmax_t) sb.st_ino);

close(userns_fd);

}

/* Obtain a file descriptor for the parent namespace and
then obtain and display the inode number of that namespace. */

Linux man-pages 6.7 2024-03-03 3

ioctl_ns(2)

}
SEE ALSO

System Calls Manual

if (argc > 2 && strchr(argv[2], "p")) {
parent_fd = ioctl(fd, NS_GET_PARENT);

if (parent_fd == -1) {
if (errno == EINVAL)
printf('Can® get parent namespace of a
"nonhierarchical namespace\n™);
else if (errno == EPERM)
printf("'The parent namespace is outside
"'your namespace scope\n'’);

else
perror("ioctl-NS_GET_PARENT™);
exit(EXIT_FAILURE);

}

if (fstat(parent_fd, &sb) == -1) {
perror("'fstat-parentns'™);
exit(EXIT_FAILURE);

}

printf("'Device/Inode of parent namespace is: [%x,%Xx]
major(sb.st _dev),
minor(sb.st_dev),
(uintmax_t) sb.st_ino);

close(parent_fd);
}

exit(EXIT_SUCCESS);

fstat(2), ioctl(2), proc(5), namespaces(7)

Linux man-pages 6.7 2024-03-03

ioctl_ns(2)

/ %ju\n’,

ioctl_pagemap_scan(2) System Calls Manual ioctl_pagemap_scan(2)

NAME

ioctl_pagemap_scan — get and/or clear page flags
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/fs.h> /* Definition of struct pm_scan_arg,
struct page_region, and PAGE_IS_* constants */
#include <sys/ioctl.h>

int ioctl(int pagemap_fd, PAGEMAP_SCAN, struct pm_scan_arg *arg);

DESCRIPTION
This ioctl(2) is used to get and optionally clear some specific flags from page table entries. The infor-
mation is returned with PAGE_SIZE granularity.

To start tracking the written state (flag) of a page or range of memory, the UFFD_FEA-
TURE_WP_ASYNC must be enabled by UFFDIO_API ioctl(2) on userfaultfd and memory range
must be registered with UFFDIO_REGISTER ioctl(2) in UFFDIO_REGISTER_MODE_WP mode.

Supported page flags
The following page table entry flags are supported:

PAGE_IS_WPALLOWED
The page has asynchronous write-protection enabled.

PAGE_IS_WRITTEN
The page has been written to from the time it was write protected.

PAGE_IS_FILE
The page is file backed.

PAGE_IS_PRESENT
The page is present in the memory.

PAGE_IS_SWAPPED
The page is swapped.

PAGE_IS_PFNZERO
The page has zero PFN.

PAGE_IS_HUGE
The page is THP or Hugetlb backed.

Supported operations
The get operation is always performed if the output buffer is specified. The other operations are as fol-
lowing:

PM_SCAN_WP_MATCHING
Write protect the matched pages.

PM_SCAN_CHECK_WPASYNC
Abort the scan when a page is found which doesn’t have the Userfaultfd Asynchronous Write
protection enabled.

The struct pm_scan_arg argument
struct pm_scan_arg {
__u6b4d size;

__ue4 flags;
__ub4 start;
__ubd end;
__u64 walk_end;
__ub4 vec;

__u6b4 vec len;

__u64 max_pages

__ub4 category_inverted;
__ub4 category_mask;
__ub4 category_anyof mask

Linux man-pages 6.7 2024-01-28 1

ioctl_pagemap_scan(2) System Calls Manual ioctl_pagemap_scan(2)

__u64 return_mask;
}:
size This field should be set to the size of the structure in bytes, as in sizeof(struct pm_scan_arg).
flags The operations to be performed are specified in it.
start The starting address of the scan is specified in it.
end The ending address of the scan is specified in it.

walk_end
The kernel returns the scan’s ending address in it. The walk_end equal to end means that scan
has completed on the entire range.

vec The address of page_region array for output.

struct page_region {
__ub4 start;
__ub4 end;
__uB4 categories;

}:
vec_len
The length of the page_region struct array.

max_pages
It is the optional limit for the number of output pages required.

category_inverted
PAGE_IS_* categories which values match if 0 instead of 1.

category_mask
Skip pages for which any PAGE_IS_* category doesn’t match.

category_anyof _mask
Skip pages for which no PAGE_IS_* category matches.

return_mask
PAGE_IS * categories that are to be reported in page_region.

RETURN VALUE
On error, =1 is returned, and errno is set to indicate the error.

ERRORS
Error codes can be one of, but are not limited to, the following:

EINVAL
Invalid arguments i.e., invalid size of the argument, invalid flags, invalid categories, the start
address isn’t aligned with PAGE_SIZE, or vec_len is specified when vec is NULL.

EFAULT
Invalid arg pointer, invalid vec pointer, or invalid address range specified by start and end.

ENOMEM
No memory is available.

EINTR
Fetal signal is pending.

STANDARDS
Linux.

HISTORY
Linux 6.7.

SEE ALSO
ioctl(2)

Linux man-pages 6.7 2024-01-28 2

ioctl_pipe(2) System Calls Manual ioctl_pipe(2)

NAME
ioctl_pipe — ioctl() operations for General notification mechanism
SYNOPSIS

#include <linux/watch_queue.h> /* Definition of IOC_WATCH_QUEUE_* */
#include <sys/ioctl.h>

int ioctl(int pipefd[1], IOC_WATCH_QUEUE_SET_SIZE, int size);
int ioctl(int pipefd[1], IOC_WATCH_QUEUE_SET FILTER,
struct watch_notification_filter * filter);
DESCRIPTION

The following ioctl(2) operations are provided to set up general notification queue parameters. The no-
tification queue is built on the top of a pipe(2) opened with the O_NOTIFICATION_PIPE flag.

IOC_WATCH_QUEUE_SET_SIZE (since Linux 5.8)

Preallocates the pipe buffer memory so that it can fit size notification messages. Currently,
size must be between 1 and 512.

IOC_WATCH_QUEUE_SET_FILTER (since Linux 5.8)
Watch queue filter can limit events that are received. Filters are passed in a struct watch_noti-
fication_filter and each filter is described by a struct watch_notification_type_filter structure.

struct watch_notification_filter {
. u32 nr_filters;
. u32 __reserved;

struct watch_notification_type_filter filters[];
}:

struct watch_notification_type_filter {
_u32 type;
. u32 info_filter;
. u32 info_mask;
. u32 subtype_filter[8];
}:
SEE ALSO
pipe(2), ioctl(2)

Linux man-pages 6.7 2023-10-31 1

ioctl_tty(2) System Calls Manual ioctl_tty(2)

NAME

ioctl_tty — ioctls for terminals and serial lines
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/ioctl.h>

#include <asm/termbits.h> /* Definition of struct termios,
struct termios2, and
Bnnn, BOTHER, CBAUD, CLOCAL,
TC*{FLUSH,ON,OFF} and other constants */

int ioctl(int fd, int op, ...);

DESCRIPTION
The ioctl(2) call for terminals and serial ports accepts many possible operation arguments. Most re-
quire a third argument, of varying type, here called argp or arg.

Use of ioctl() makes for nonportable programs. Use the POSIX interface described in termios(3)
whenever possible.

Please note that struct termios from <asm/termbits.h> is different and incompatible with struct
termios from <termios.h>. These ioctl calls require struct termios from <asm/termbits.h>.

Get and set terminal attributes
TCGETS
Argument: struct termios *argp

Equivalent to tcgetattr(fd, argp).
Get the current serial port settings.

TCSETS
Argument: const struct termios *argp

Equivalent to tcsetattr(fd, TCSANOW, argp).
Set the current serial port settings.

TCSETSW
Argument: const struct termios *argp

Equivalent to tcsetattr(fd, TCSADRAIN, argp).
Allow the output buffer to drain, and set the current serial port settings.

TCSETSF
Argument: const struct termios *argp

Equivalent to tcsetattr(fd, TCSAFLUSH, argp).
Allow the output buffer to drain, discard pending input, and set the current serial port settings.

The following four ioctls, added in Linux 2.6.20, are just like TCGETS, TCSETS, TCSETSW, TC-
SETSF, except that they take a struct termios2 * instead of a struct termios *. If the structure member
c_cflag contains the flag BOTHER, then the baud rate is stored in the structure members c_ispeed and
c_ospeed as integer values. These ioctls are not supported on all architectures.

TCGETS2 struct termios2 *argp

TCSETS2 const struct termios2 *argp

TCSETSW2 const struct termios2 *argp

TCSETSF2 const struct termios2 *argp

The following four ioctls are just like TCGETS, TCSETS, TCSETSW, TCSETSF, except that they
take a struct termio * instead of a struct termios *.

TCGETA struct termio *argp

TCSETA const struct termio *argp

TCSETAW const struct termio *argp

TCSETAF const struct termio *argp

Linux man-pages 6.7 2024-03-03 1

ioctl_tty(2) System Calls Manual ioctl_tty(2)

Locking the termios structure
The termios structure of a terminal can be locked. The lock is itself a termios structure, with nonzero
bits or fields indicating a locked value.

TIOCGLCKTRMIOS
Argument: struct termios *argp

Gets the locking status of the termios structure of the terminal.

TIOCSLCKTRMIOS
Argument: const struct termios *argp

Sets the locking status of the termios structure of the terminal. Only a process with the
CAP_SYS_ADMIN capability can do this.

Get and set window size
Window sizes are kept in the kernel, but not used by the kernel (except in the case of virtual consoles,
where the kernel will update the window size when the size of the virtual console changes, for example,
by loading a new font).

TIOCGWINSZ
Argument: struct winsize *argp

Get window size.

TIOCSWINSZ
Argument: const struct winsize *argp

Set window size.
The struct used by these ioctls is defined as

struct winsize {
unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel; /* unused */
unsigned short ws_ypixel; /* unused */
}:
When the window size changes, a SIGWINCH signal is sent to the foreground process group.

Sending a break
TCSBRK
Argument: int arg

Equivalent to tcsendbreak(fd, arg).

If the terminal is using asynchronous serial data transmission, and arg is zero, then send a
break (a stream of zero bits) for between 0.25 and 0.5 seconds. If the terminal is not using
asynchronous serial data transmission, then either a break is sent, or the function returns with-
out doing anything. When arg is nonzero, nobody knows what will happen.

(SVr4, UnixWare, Solaris, and Linux treat tcsendbreak(fd,arg) with nonzero arg like
tedrain(fd). SunOS treats arg as a multiplier, and sends a stream of bits arg times as long as
done for zero arg. DG/UX and AlX treat arg (when nonzero) as a time interval measured in
milliseconds. HP-UX ignores arg.)

TCSBRKP
Argument: int arg

So-called "POSIX version" of TCSBRK. It treats nonzero arg as a time interval measured in
deciseconds, and does nothing when the driver does not support breaks.

TIOCSBRK
Argument: void

Turn break on, that is, start sending zero bits.

TIOCCBRK
Argument: void

Linux man-pages 6.7 2024-03-03 2

ioctl_tty(2) System Calls Manual ioctl_tty(2)

Turn break off, that is, stop sending zero bits.

Software flow control
TCXONC
Argument: int arg

Equivalent to tcflow(fd, arg).
See tcflow(3) for the argument values TCOOFF, TCOON, TCIOFF, TCION.

Buffer count and flushing
FIONREAD
Argument: int *argp

Get the number of bytes in the input buffer.

TIOCINQ
Argument: int *argp

Same as FIONREAD.

TIOCOUTQ
Argument: int *argp
Get the number of bytes in the output buffer.

TCFLSH
Argument: int arg

Equivalent to tcflush(fd, arg).
See tcflush(3) for the argument values TCIFLUSH, TCOFLUSH, TCIOFLUSH.

TIOCSERGETLSR
Argument: int *argp

Get line status register. Status register has TIOCSER_TEMT bit set when output buffer is
empty and also hardware transmitter is physically empty.

Does not have to be supported by all serial tty drivers.
tedrain(3) does not wait and returns immediately when TIOCSER_TEMT bit is set.

Faking input
TIOCSTI
Argument: const char *argp

Insert the given byte in the input queue.

Since Linux 6.2, this operation may require the CAP_SYS_ADMIN capability (if the
dev.tty.legacy _tiocsti sysctl variable is set to false).

Redirecting console output
TIOCCONS
Argument: void

Redirect output that would have gone to /dev/console or /dev/ttyO to the given terminal. If
that was a pseudoterminal master, send it to the slave. Before Linux 2.6.10, anybody can do
this as long as the output was not redirected yet; since Linux 2.6.10, only a process with the
CAP_SYS_ADMIN capability may do this. If output was redirected already, then EBUSY is
returned, but redirection can be stopped by using this ioctl with fd pointing at /dev/console or

/dev/tty0.
Controlling terminal
TIOCSCTTY

Argument: int arg

Make the given terminal the controlling terminal of the calling process. The calling process
must be a session leader and not have a controlling terminal already. For this case, arg should
be specified as zero.

If this terminal is already the controlling terminal of a different session group, then the ioctl
fails with EPERM, unless the caller has the CAP_SYS_ADMIN capability and arg equals 1,

Linux man-pages 6.7 2024-03-03 3

ioctl_tty(2) System Calls Manual ioctl_tty(2)

in which case the terminal is stolen, and all processes that had it as controlling terminal lose it.

TIOCNOTTY
Argument: void

If the given terminal was the controlling terminal of the calling process, give up this control-
ling terminal. If the process was session leader, then send SIGHUP and SIGCONT to the
foreground process group and all processes in the current session lose their controlling termi-
nal.

Process group and session 1D
TIOCGPGRP
Argument: pid_t *argp

When successful, equivalent to *argp = tcgetpgrp(fd).
Get the process group ID of the foreground process group on this terminal.

TIOCSPGRP

Argument: const pid_t *argp

Equivalent to tcsetpgrp(fd, *argp).

Set the foreground process group ID of this terminal.
TIOCGSID

Argument: pid_t *argp

When successful, equivalent to *argp = tcgetsid(fd).

Get the session ID of the given terminal. This fails with the error ENOTTY if the terminal is
not a master pseudoterminal and not our controlling terminal. Strange.

Exclusive mode
TIOCEXCL
Argument: void

Put the terminal into exclusive mode. No further open(2) operations on the terminal are per-
mitted. (They fail with EBUSY, except for a process with the CAP_SYS_ADMIN capabil-
ity.)

TIOCGEXCL
Argument: int *argp

(since Linux 3.8) If the terminal is currently in exclusive mode, place a nonzero value in the
location pointed to by argp; otherwise, place zero in *argp.

TIOCNXCL
Argument: void

Disable exclusive mode.
Line discipline
TIOCGETD
Argument: int *argp
Get the line discipline of the terminal.

TIOCSETD
Argument: const int *argp

Set the line discipline of the terminal.

Pseudoterminal ioctls
TIOCPKT
Argument: const int *argp

Enable (when *argp is nonzero) or disable packet mode. Can be applied to the master side of
a pseudoterminal only (and will return ENOTTY otherwise). In packet mode, each subse-
quent read(2) will return a packet that either contains a single nonzero control byte, or has a
single byte containing zero (\0') followed by data written on the slave side of the pseudotermi-
nal. If the first byte is not TIOCPKT_DATA (0), it is an OR of one or more of the following

Linux man-pages 6.7 2024-03-03 4

ioctl_tty(2) System Calls Manual ioctl_tty(2)

bits:

TIOCPKT_FLUSHREAD The read queue for the terminal is
flushed.

TIOCPKT_FLUSHWRITE The write queue for the terminal is
flushed.

TIOCPKT_STOP Output to the terminal is stopped.

TIOCPKT_START Output to the terminal is restarted.

TIOCPKT_DOSTOP The start and stop characters are
NSINQ.

TIOCPKT_NOSTOP The start and stop characters are not
NSINQ.

While packet mode is in use, the presence of control status information to be read from the
master side may be detected by a select(2) for exceptional conditions or a poll(2) for the
POLLPRI event.

This mode is used by rlogin(1) and rlogind(8) to implement a remote-echoed, locally ~S/*Q
flow-controlled remote login.

TIOCGPKT
Argument: const int *argp

(since Linux 3.8) Return the current packet mode setting in the integer pointed to by argp.
TIOCSPTLCK
Argument: int *argp
Set (if *argp is nonzero) or remove (if *argp is zero) the lock on the pseudoterminal slave de-
vice. (See also unlockpt(3).)
TIOCGPTLCK
Argument: int *argp
(since Linux 3.8) Place the current lock state of the pseudoterminal slave device in the loca-
tion pointed to by argp.

TIOCGPTPEER
Argument: int flags

(since Linux 4.13) Given a file descriptor in fd that refers to a pseudoterminal master, open
(with the given open(2)-style flags) and return a new file descriptor that refers to the peer
pseudoterminal slave device. This operation can be performed regardless of whether the path-
name of the slave device is accessible through the calling process’s mount namespace.

Security-conscious programs interacting with namespaces may wish to use this operation
rather than open(2) with the pathname returned by ptsname(3), and similar library functions
that have insecure APIs. (For example, confusion can occur in some cases using ptsname(3)
with a pathname where a devpts filesystem has been mounted in a different mount name-
space.)

The BSD ioctls TIOCSTOP, TIOCSTART, TIOCUCNTL, and TIOCREMOTE have not been im-
plemented under Linux.

Modem control
TIOCMGET
Argument: int *argp

Get the status of modem bits.

TIOCMSET
Argument: const int *argp

Set the status of modem bits.

TIOCMBIC
Argument: const int *argp

Clear the indicated modem bits.

Linux man-pages 6.7 2024-03-03 5

ioctl_tty(2)

TIOCMBIS

System Calls Manual

Argument: const int *argp

Set the indicated modem bits.

The following bits are used by the above ioctls:

TIOCM_LE
TIOCM_DTR
TIOCM_RTS
TIOCM_ST
TIOCM_SR
TIOCM_CTS
TIOCM_CAR
TIOCM_CD
TIOCM_RNG
TIOCM_RI
TIOCM_DSR

TIOCMIWAIT

DSR (data set ready/line enable)
DTR (data terminal ready)
RTS (request to send)
Secondary TXD (transmit)
Secondary RXD (receive)
CTS (clear to send)

DCD (data carrier detect)
see TIOCM_CAR

RNG (ring)

see TIOCM_RNG

DSR (data set ready)

Argument: int arg

Wait for any of the 4 modem bits (DCD, RI, DSR, CTS) to change. The bits of interest are
specified as a bit mask in arg, by ORing together any of the bit values, TIOCM_RNG, TI-
OCM_DSR, TIOCM_CD, and TIOCM_CTS. The caller should use TIOCGICOUNT to
see which bit has changed.

TIOCGICOUNT

Argument: struct serial_icounter_struct *argp

ioctl_tty(2)

Get counts of input serial line interrupts (DCD, RI, DSR, CTS). The counts are written to the

serial_icounter_struct structure pointed to by argp.

Note: both 1->0 and 0->1 transitions are counted, except for RI, where only 0->1 transitions
are counted.

Marking a line as local

TIOCGSOFTCAR
Argument: int *argp

("Get software carrier flag") Get the status of the CLOCAL flag in the c_cflag field of the
termios structure.

TIOCSSOFTCAR
Argument: const int *argp

("Set software carrier flag") Set the CLOCAL flag in the termios structure when *argp is
nonzero, and clear it otherwise.

If the CLOCAL flag for a line is off, the hardware carrier detect (DCD) signal is significant, and an
open(2) of the corresponding terminal will block until DCD is asserted, unless the O_NONBLOCK
flag is given. If CLOCAL is set, the line behaves as if DCD is always asserted. The software carrier

flag is usually turned on for local devices, and is off for lines with modems.

Linux-specific

For the TIOCLINUX ioctl, see ioctl_console(2).

Kernel debugging

#include <linux/tty.h>

TIOCTTYGSTRUCT
Argument: struct tty_struct *argp

Get the tty_struct corresponding to fd. This operation was removed in Linux 2.5.67.

RETURN VALUE

The ioctl(2) system call returns 0 on success. On error, it returns —1 and sets errno to indicate the error.

Linux man-pages 6.7

2024-03-03

ioctl_tty(2) System Calls Manual ioctl_tty(2)

ERRORS
EINVAL
Invalid operation parameter.

ENOIOCTLCMD
Unknown operation.

ENOTTY
Inappropriate fd.

EPERM
Insufficient permission.

EXAMPLES
Check the condition of DTR on the serial port.

#include <fcntl.h>
#include <stdio.h>
#include <sys/ioctl_h>
#include <unistd.h>

int
main(void)
{
int fd, serial;
fd = open(*"/dev/ttyS0", O _RDONLY);
ioctl(fd, TIOCMGET, &serial);
if (serial & TIOCM_DTR)
puts(""'TIOCM_DTR is set');
else
puts(""TIOCM_DTR is not set');
close(fd);
}

Get or set arbitrary baudrate on the serial port.
/* SPDX-License-ldentifier: GPL-2.0-or-later */

#include <asm/termbits.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl_h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
#i1T ldefined BOTHER
fprintf(stderr, "BOTHER is unsupported\n');
/* Program may fallback to TCGETS/TCSETS with Bnnn constants */
exit(EXIT_FAILURE);
#else
/* Declare tio structure, its type depends on supported ioctl */
1T defined TCGETS2
struct termios2 tio;

else

struct termios tio;
endif

int fd, rc;

if (argc '= 2 && argc '= 3 && argc '= 4) {

Linux man-pages 6.7 2024-03-03 7

ioctl_tty(2) System Calls Manual ioctl_tty(2)

fprintf(stderr, "Usage: %s device [output [input] J\n", argv[0]);
exit(EXIT_FAILURE);

3
fd = open(argv[1l], O _RDWR | O_NONBLOCK | O_NOCTTY);
if (fd < 0) {

perror('open™);

exit(EXIT_FAILURE);
3

/* Get the current serial port settings via supported ioctl */
1T defined TCGETS2
rc = 1octl(fd, TCGETS2, &tio);
else
rc = ioctl(fd, TCGETS, &tio);
endif
it (rc) {
perror(""TCGETS™);
close(fd);
exit(EXIT_FAILURE);

}

/* Change baud rate when more arguments were provided */
if (argc == 3 || argc == 4) {
/* Clear the current output baud rate and fill a new value */
tio.c_cflag &= ~CBAUD;
tio.c_cflag |= BOTHER;
tio.c_ospeed = atoi(argv[2]);

/* Clear the current input baud rate and fill a new value */
tio.c_cflag &= ~(CBAUD << IBSHIFT);

tio.c_cflag |= BOTHER << IBSHIFT;

/* When 4th argument is not provided reuse output baud rate */
tio.c_ispeed = (argc == 4) ? atoi(argv[3]) : atoi(argv[2?2]);

/* Set new serial port settings via supported ioctl */
1T defined TCSETS2
rc = 1octl(fd, TCSETS2, &tio);

else
rc = ioctl(fd, TCSETS, &tio);
endif
if (rc) {
perror("'TCSETS™);
close(fd);

exit(EXIT_FAILURE);
}

/* And get new values which were really configured */
1T defined TCGETS2
rc = 1octl(fd, TCGETS2, &tio);

else
rc = ioctl(fd, TCGETS, &tio);
endif
if (rc) {
perror("'TCGETS™);
close(fd);
exit(EXIT_FAILURE);
}
}

Linux man-pages 6.7 2024-03-03 8

ioctl_tty(2) System Calls Manual ioctl_tty(2)

close(fd);

printf('output baud rate: %u\n', tio.c_ospeed);
printf(""input baud rate: %u\n'", tio.c_ispeed);

exit(EXIT_SUCCESS);
#endi

}

SEE ALSO
Idattach(8), ioctl(2), ioctl_console(2), termios(3), pty(7)

Linux man-pages 6.7 2024-03-03 9

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

NAME
ioctl_userfaultfd — create a file descriptor for handling page faults in user space

LIBRARY
Standard C library (libc, —Ic)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd, int op, ...);

DESCRIPTION
Various ioctl(2) operations can be performed on a userfaultfd object (created by a call to userfaultfd(2))
using calls of the form:

ioctl(fd, op, argp);

In the above, fd is a file descriptor referring to a userfaultfd object, op is one of the operations listed
below, and argp is a pointer to a data structure that is specific to op.

The various ioctl(2) operations are described below. The UFFDIO_API, UFFDIO_REGISTER, and
UFFDIO_UNREGISTER operations are used to configure userfaultfd behavior. These operations al-
low the caller to choose what features will be enabled and what kinds of events will be delivered to the
application. The remaining operations are range operations. These operations enable the calling appli-
cation to resolve page-fault events.

UFFDIO_API
(Since Linux 4.3.) Enable operation of the userfaultfd and perform API handshake.

The argp argument is a pointer to a uffdio_api structure, defined as:

struct uffdio_api {

__u6b4 api; /* Requested API version (input) */
__u64 features; /* Requested features (input/output) */
__u6b4 ioctls; /* Available ioctl() operations (output) */

}:
The api field denotes the API version requested by the application. The kernel verifies that it can sup-

port the requested API version, and sets the features and ioctls fields to bit masks representing all the
available features and the generic ioctl(2) operations available.

Since Linux 4.11, applications should use the features field to perform a two-step handshake. First,
UFFDIO_API is called with the features field set to zero. The kernel responds by setting all sup-
ported feature bits.

Applications which do not require any specific features can begin using the userfaultfd immediately.
Applications which do need specific features should call UFFDIO_API again with a subset of the re-
ported feature bits set to enable those features.

Before Linux 4.11, the features field must be initialized to zero before the call to UFFDIO_API, and
zero (i.e., no feature bits) is placed in the features field by the kernel upon return from ioctl(2).

If the application sets unsupported feature bits, the kernel will zero out the returned uffdio_api structure
and return EINVAL.

The following feature bits may be set:

UFFD_FEATURE_EVENT_FORK (since Linux 4.11)
When this feature is enabled, the userfaultfd objects associated with a parent process are du-
plicated into the child process during fork(2) and a UFFD_EVENT_FORK event is delivered
to the userfaultfd monitor

UFFD_FEATURE_EVENT_REMAP (since Linux 4.11)
If this feature is enabled, when the faulting process invokes mremap(2), the userfaultfd moni-
tor will receive an event of type UFFD_EVENT_REMAP.

UFFD_FEATURE_EVENT_REMOVE (since Linux 4.11)
If this feature is enabled, when the faulting process calls madvise(2) with the MADV_DONT-
NEED or MADV_REMOVE advice value to free a virtual memory area the userfaultfd

Linux man-pages 6.7 2024-03-03 1

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

monitor will receive an event of type UFFD_EVENT_REMOVE.

UFFD_FEATURE_EVENT_UNMARP (since Linux 4.11)
If this feature is enabled, when the faulting process unmaps virtual memory either explicitly
with munmap(2), or implicitly during either mmap(2) or mremap(2), the userfaultfd monitor
will receive an event of type UFFD_EVENT_UNMAP.

UFFD_FEATURE_MISSING_HUGETLBFS (since Linux 4.11)
If this feature bit is set, the kernel supports registering userfaultfd ranges on hugetlbfs virtual
memory areas

UFFD_FEATURE_MISSING_SHMEM (since Linux 4.11)
If this feature bit is set, the kernel supports registering userfaultfd ranges on shared memory
areas. This includes all kernel shared memory APIs: System V shared memory, tmpfs(5),
shared mappings of /dev/zero, mmap(2) with the MAP_SHARED flag set, memfd_create(2),
and so on.

UFFD_FEATURE_SIGBUS (since Linux 4.14)
If this feature bit is set, no page-fault events (UFFD_EVENT_PAGEFAULT) will be deliv-
ered. Instead, a SIGBUS signal will be sent to the faulting process. Applications using this
feature will not require the use of a userfaultfd monitor for processing memory accesses to the
regions registered with userfaultfd.

UFFD_FEATURE_THREAD_ID (since Linux 4.14)
If this feature bit is set, uffd_msg.pagefault.feat.ptid will be set to the faulted thread ID for
each page-fault message.

UFFD_FEATURE_PAGEFAULT_FLAG_WP (since Linux 5.10)
If this feature bit is set, userfaultfd supports write-protect faults for anonymous memory.
(Note that shmem / hugetlbfs support is indicated by a separate feature.)

UFFD_FEATURE_MINOR_HUGETLBFS (since Linux 5.13)
If this feature bit is set, the kernel supports registering userfaultfd ranges in minor mode on
hugetlbfs-backed memory areas.

UFFD_FEATURE_MINOR_SHMEM (since Linux 5.14)
If this feature bit is set, the kernel supports registering userfaultfd ranges in minor mode on
shmem-backed memory areas.

UFFD_FEATURE_EXACT_ADDRESS (since Linux 5.18)
If this feature bit is set, uffd_msg.pagefault.address will be set to the exact page-fault address
that was reported by the hardware, and will not mask the offset within the page. Note that old
Linux versions might indicate the exact address as well, even though the feature bit is not set.

UFFD_FEATURE_WP_HUGETLBFS_SHMEM (since Linux 5.19)
If this feature bit is set, userfaultfd supports write-protect faults for hugetlbfs and shmem /
tmpfs memory.

UFFD_FEATURE_WP_UNPOPULATED (since Linux 6.4)
If this feature bit is set, the kernel will handle anonymous memory the same way as file mem-
ory, by allowing the user to write-protect unpopulated page table entries.

UFFD_FEATURE_POISON (since Linux 6.6)
If this feature bit is set, the kernel supports resolving faults with the UFFDIO_POISON ioctl.

UFFD_FEATURE_WP_ASYNC (since Linux 6.7)
If this feature bit is set, the write protection faults would be asynchronously resolved by the
kernel.

The returned ioctls field can contain the following bits:

1<<_UFFDIO_API
The UFFDIO_API operation is supported.

1 << _UFFDIO_REGISTER
The UFFDIO_REGISTER operation is supported.

Linux man-pages 6.7 2024-03-03 2

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

1 << _UFFDIO_UNREGISTER
The UFFDIO_UNREGISTER operation is supported.

This ioctl(2) operation returns 0 on success. On error, =1 is returned and errno is set to indicate the er-
ror. If an error occurs, the kernel may zero the provided uffdio_api structure. The caller should treat its
contents as unspecified, and reinitialize it before re-attempting another UFFDIO_API call. Possible
errors include:

EFAULT
argp refers to an address that is outside the calling process’s accessible address space.

EINVAL
The API version requested in the api field is not supported by this kernel, or the features field
passed to the kernel includes feature bits that are not supported by the current kernel version.

EINVAL
A previous UFFDIO_API call already enabled one or more features for this userfaultfd. Call-
ing UFFDIO_API twice, the first time with no features set, is explicitly allowed as per the
two-step feature detection handshake.

EPERM
The UFFD_FEATURE_EVENT_FORK feature was enabled, but the calling process doesn’t
have the CAP_SYS_PTRACE capability.

UFFDIO_REGISTER
(Since Linux 4.3.) Register a memory address range with the userfaultfd object. The pages in the
range must be “compatible”. Please refer to the list of register modes below for the compatible mem-
ory backends for each mode.

The argp argument is a pointer to a uffdio_register structure, defined as:

struct uffdio_range {

__u6b4 start; /* Start of range */

__u64 len; /* Length of range (bytes) */
}:

struct uffdio_register {
struct uffdio_range range;
__u64 mode; /* Desired mode of operation (input) */
__u6b4 ioctls; /* Available ioctl() operations (output) */
}:
The range field defines a memory range starting at start and continuing for len bytes that should be
handled by the userfaultfd.

The mode field defines the mode of operation desired for this memory region. The following values
may be bitwise ORed to set the userfaultfd mode for the specified range:

UFFDIO_REGISTER_MODE_MISSING
Track page faults on missing pages. Since Linux 4.3, only private anonymous ranges are com-
patible. Since Linux 4.11, hugetlbfs and shared memory ranges are also compatible.

UFFDIO_REGISTER_MODE_WP
Track page faults on write-protected pages. Since Linux 5.7, only private anonymous ranges
are compatible.

UFFDIO_REGISTER_MODE_MINOR
Track minor page faults. Since Linux 5.13, only hugetlbfs ranges are compatible. Since
Linux 5.14, compatibility with shmem ranges was added.

If the operation is successful, the kernel modifies the ioctls bit-mask field to indicate which ioctl(2) op-
erations are available for the specified range. This returned bit mask can contain the following bits:

1 << _UFFDIO_COPY
The UFFDIO_COPY operation is supported.

Linux man-pages 6.7 2024-03-03 3

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

1 << _UFFDIO_WAKE
The UFFDIO_WAKE operation is supported.

1<<_UFFDIO_WRITEPROTECT
The UFFDIO_WRITEPROTECT operation is supported.

1 << _UFFDIO_ZEROPAGE
The UFFDIO_ZEROPAGE operation is supported.

1 << _UFFDIO_CONTINUE
The UFFDIO_CONTINUE operation is supported.

1 << _UFFDIO_POISON
The UFFDIO_POISON operation is supported.

This ioctl(2) operation returns 0 on success. On error, =1 is returned and errno is set to indicate the er-
ror. Possible errors include:

EBUSY
A mapping in the specified range is registered with another userfaultfd object.

EFAULT
argp refers to an address that is outside the calling process’s accessible address space.

EINVAL
An invalid or unsupported bit was specified in the mode field; or the mode field was zero.

EINVAL
There is no mapping in the specified address range.

EINVAL
range.start or range.len is not a multiple of the system page size; or, range.len is zero; or
these fields are otherwise invalid.

EINVAL
There as an incompatible mapping in the specified address range.

UFFDIO_UNREGISTER
(Since Linux 4.3.) Unregister a memory address range from userfaultfd. The pages in the range must
be “compatible” (see the description of UFFDIO_REGISTER.)

The address range to unregister is specified in the uffdio_range structure pointed to by argp.

This ioctl(2) operation returns 0 on success. On error, =1 is returned and errno is set to indicate the er-
ror. Possible errors include:

EINVAL
Either the start or the len field of the ufdio_range structure was not a multiple of the system
page size; or the len field was zero; or these fields were otherwise invalid.

EINVAL
There as an incompatible mapping in the specified address range.

EINVAL
There was no mapping in the specified address range.

UFFDIO_COPY
(Since Linux 4.3.) Atomically copy a continuous memory chunk into the userfault registered range and
optionally wake up the blocked thread. The source and destination addresses and the number of bytes
to copy are specified by the src, dst, and len fields of the uffdio_copy structure pointed to by argp:

struct uffdio_copy {
__ub4 dst; /* Destination of copy */
__ub4 src; /* Source of copy */
__u64 len; /* Number of bytes to copy */
__u64 mode; /* Flags controlling behavior of copy */
__s64 copy; /* Number of bytes copied, or negated error */
}:
The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_COPY op-
eration:

Linux man-pages 6.7 2024-03-03 4

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

UFFDIO_COPY_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution

UFFDIO_COPY_MODE_WP
Copy the page with read-only permission. This allows the user to trap the next write to the
page, which will block and generate another write-protect userfault message. This is used
only when both UFFDIO_REGISTER_MODE_MISSING and UFFDIO_REGIS-
TER_MODE_WP modes are enabled for the registered range.

The copy field is used by the kernel to return the number of bytes that was actually copied, or an error
(a negated errno-style value). If the value returned in copy doesn’t match the value that was specified
in len, the operation fails with the error EAGAIN. The copy field is output-only; it is not read by the
UFFDIO_COPY operation.

This ioctl(2) operation returns 0 on success. In this case, the entire area was copied. On error, =1 is re-
turned and errno is set to indicate the error. Possible errors include:

EAGAIN
The number of bytes copied (i.e., the value returned in the copy field) does not equal the value
that was specified in the len field.

EINVAL
Either dst or len was not a multiple of the system page size, or the range specified by src and
len or dst and len was invalid.

EINVAL
An invalid bit was specified in the mode field.

ENOENT (since Linux 4.11)
The faulting process has changed its virtual memory layout simultaneously with an outstand-
ing UFFDIO_COPY operation.

ENOSPC (from Linux 4.11 until Linux 4.13)
The faulting process has exited at the time of a UFFDIO_COPY operation.

ESRCH (since Linux 4.13)
The faulting process has exited at the time of a UFFDIO_COPY operation.

UFFDIO_ZEROPAGE
(Since Linux 4.3.) Zero out a memory range registered with userfaultfd.

The requested range is specified by the range field of the uffdio_zeropage structure pointed to by argp:

struct uffdio_zeropage {
struct uffdio_range range;
__u64 mode; /* Flags controlling behavior of copy */
__s64 zeropage; /* Number of bytes zeroed, or negated error */
}:
The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_ZE-
ROPAGE operation

UFFDIO_ZEROPAGE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The zeropage field is used by the kernel to return the number of bytes that was actually zeroed, or an
error in the same manner as UFFDIO_COPY. If the value returned in the zeropage field doesn’t
match the value that was specified in range.len, the operation fails with the error EAGAIN. The ze-
ropage field is output-only; it is not read by the UFFDIO_ZEROPAGE operation.

This ioctl(2) operation returns 0 on success. In this case, the entire area was zeroed. On error, =1 is re-
turned and errno is set to indicate the error. Possible errors include:

EAGAIN
The number of bytes zeroed (i.e., the value returned in the zeropage field) does not equal the
value that was specified in the range.len field.

Linux man-pages 6.7 2024-03-03 5

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

EINVAL
Either range.start or range.len was not a multiple of the system page size; or range.len was
zero; or the range specified was invalid.

EINVAL
An invalid bit was specified in the mode field.

ESRCH (since Linux 4.13)
The faulting process has exited at the time of a UFFDIO_ZEROPAGE operation.

UFFDIO_WAKE
(Since Linux 4.3.) Wake up the thread waiting for page-fault resolution on a specified memory address
range.

The UFFDIO_WAKE operation is used in conjunction with UFFDIO_COPY and UFFDIO_ZE-
ROPAGE operations that have the UFFDIO_COPY_MODE_DONTWAKE or UFFDIO_ZE-
ROPAGE_MODE_DONTWAKE bit set in the mode field. The userfault monitor can perform several
UFFDIO_COPY and UFFDIO_ZEROPAGE operations in a batch and then explicitly wake up the
faulting thread using UFFDIO_WAKE.

The argp argument is a pointer to a uffdio_range structure (shown above) that specifies the address
range.

This ioctl(2) operation returns 0 on success. On error, =1 is returned and errno is set to indicate the er-
ror. Possible errors include:

EINVAL
The start or the len field of the ufdio_range structure was not a multiple of the system page
size; or len was zero; or the specified range was otherwise invalid.

UFFDIO_WRITEPROTECT
(Since Linux 5.7.) Write-protect or write-unprotect a userfaultfd-registered memory range registered
with mode UFFDIO_REGISTER_MODE_WP.

The argp argument is a pointer to a uffdio_range structure as shown below:

struct uffdio_writeprotect {
struct uffdio_range range; /* Range to change write permission*/
__u64 mode; /* Mode to change write permission */

}:
There are two mode bits that are supported in this structure:
UFFDIO_WRITEPROTECT_MODE_WP
When this mode bit is set, the ioctl will be a write-protect operation upon the memory range

specified by range. Otherwise it will be a write-unprotect operation upon the specified range,
which can be used to resolve a userfaultfd write-protect page fault.

UFFDIO_WRITEPROTECT_MODE_DONTWAKE
When this mode bit is set, do not wake up any thread that waits for page-fault resolution after
the operation. This can be specified only if UFFDIO_WRITEPROTECT_MODE_WP is
not specified.

This ioctl(2) operation returns 0 on success. On error, =1 is returned and errno is set to indicate the er-
ror. Possible errors include:

EINVAL
The start or the len field of the ufdio_range structure was not a multiple of the system page
size; or len was zero; or the specified range was otherwise invalid.

EAGAIN
The process was interrupted; retry this call.

ENOENT
The range specified in range is not valid. For example, the virtual address does not exist, or
not registered with userfaultfd write-protect mode.

Linux man-pages 6.7 2024-03-03 6

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

EFAULT
Encountered a generic fault during processing.

UFFDIO_CONTINUE
(Since Linux 5.13.) Resolve a minor page fault by installing page table entries for existing pages in the
page cache.

The argp argument is a pointer to a uffdio_continue structure as shown below:

struct uffdio_continue {
struct uffdio_range range;
/* Range to install PTEs for and continue */
__u64 mode; /* Flags controlling the behavior of continue */
__s64 mapped; /* Number of bytes mapped, or negated error */
}:
The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_CON-
TINUE operation:

UFFDIO_CONTINUE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The mapped field is used by the kernel to return the number of bytes that were actually mapped, or an
error in the same manner as UFFDIO_COPY. If the value returned in the mapped field doesn’t match
the value that was specified in range.len, the operation fails with the error EAGAIN. The mapped field
is output-only; it is not read by the UFFDIO_CONTINUE operation.

This ioctl(2) operation returns 0 on success. In this case, the entire area was mapped. On error, -1 is
returned and errno is set to indicate the error. Possible errors include:

EAGAIN
The number of bytes mapped (i.e., the value returned in the mapped field) does not equal the
value that was specified in the range.len field.

EEXIST
One or more pages were already mapped in the given range.

EFAULT
No existing page could be found in the page cache for the given range.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or range.len was
zero; or the range specified was invalid.

EINVAL
An invalid bit was specified in the mode field.

ENOENT
The faulting process has changed its virtual memory layout simultaneously with an outstand-
ing UFFDIO_CONTINUE operation.

ENOMEM
Allocating memory needed to setup the page table mappings failed.

ESRCH
The faulting process has exited at the time of a UFFDIO_CONTINUE operation.

UFFDIO_POISON
(Since Linux 6.6.) Mark an address range as "poisoned”. Future accesses to these addresses will raise
a SIGBUS signal. Unlike MADV_HWPOISON this works by installing page table entries, rather
than "really" poisoning the underlying physical pages. This means it only affects this particular address
space.

The argp argument is a pointer to a uffdio_poison structure as shown below:

struct uffdio_poison {
struct uffdio_range range;
/* Range to install poison PTE markers in */
__u64 mode; /* Flags controlling the behavior of poison */

Linux man-pages 6.7 2024-03-03 7

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

__s64 updated; /* Number of bytes poisoned, or negated error */
}:
The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_POISON
operation:

UFFDIO_POISON_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The updated field is used by the kernel to return the number of bytes that were actually poisoned, or an
error in the same manner as UFFDIO_COPY. If the value returned in the updated field doesn’t match
the value that was specified in range.len, the operation fails with the error EAGAIN. The updated field
is output-only; it is not read by the UFFDIO_POISON operation.

This ioctl(2) operation returns 0 on success. In this case, the entire area was poisoned. On error, -1 is
returned and errno is set to indicate the error. Possible errors include:

EAGAIN
The number of bytes mapped (i.e., the value returned in the updated field) does not equal the
value that was specified in the range.len field.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or range.len was
zero; or the range specified was invalid.

EINVAL
An invalid bit was specified in the mode field.

EEXIST
One or more pages were already mapped in the given range.

ENOENT
The faulting process has changed its virtual memory layout simultaneously with an outstand-
ing UFFDIO_POISON operation.

ENOMEM
Allocating memory for page table entries failed.

ESRCH
The faulting process has exited at the time of a UFFDIO_POISON operation.

RETURN VALUE
See descriptions of the individual operations, above.

ERRORS
See descriptions of the individual operations, above. In addition, the following general errors can occur
for all of the operations described above:

EFAULT
argp does not point to a valid memory address.

EINVAL
(For all operations except UFFDIO_API.) The userfaultfd object has not yet been enabled
(via the UFFDIO_API operation).

STANDARDS
Linux.

BUGS
In order to detect available userfault features and enable some subset of those features the userfaultfd
file descriptor must be closed after the first UFFDIO_API operation that queries features availability
and reopened before the second UFFDIO_API operation that actually enables the desired features.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), mmap(2), userfaultfd(2)

Documentation/admin—guide/mm/userfaultfd.rst in the Linux kernel source tree

Linux man-pages 6.7 2024-03-03 8

ioperm(2) System Calls Manual ioperm(2)

NAME

ioperm — set port input/output permissions
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/io.h>
int ioperm(unsigned long from, unsigned long num, int turn_on);

DESCRIPTION
ioperm() sets the port access permission bits for the calling thread for num bits starting from port ad-
dress from. If turn_on is nonzero, then permission for the specified bits is enabled; otherwise it is dis-
abled. If turn_on is nonzero, the calling thread must be privileged (CAP_SYS_RAWIO).

Before Linux 2.6.8, only the first 0x3ff 1/O ports could be specified in this manner. For more ports, the
iopl(2) system call had to be used (with a level argument of 3). Since Linux 2.6.8, 65,536 1/0 ports can
be specified.

Permissions are inherited by the child created by fork(2) (but see NOTES). Permissions are preserved
across execve(2); this is useful for giving port access permissions to unprivileged programs.

This call is mostly for the i386 architecture. On many other architectures it does not exist or will al-
ways return an error.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL
Invalid values for from or num.

EIO (on PowerPC) This call is not supported.

ENOMEM
Out of memory.

EPERM
The calling thread has insufficient privilege.

VERSIONS
glibc has an ioperm() prototype both in <sys/io.h> and in <sys/perm.h>. Avoid the latter, it is avail-
able on i386 only.

STANDARDS
Linux.

HISTORY
Before Linux 2.4, permissions were not inherited by a child created by fork(2).

NOTES
The /proc/ioports file shows the 1/0 ports that are currently allocated on the system.

SEE ALSO
iopl(2), outb(2), capabilities(7)

Linux man-pages 6.7 2023-10-31 1

iopl(2) System Calls Manual iopl(2)

NAME

iopl — change 1/O privilege level
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <sys/io.h>
[[deprecated]] int iopl(int level);

DESCRIPTION
iopl() changes the 1/O privilege level of the calling thread, as specified by the two least significant bits
in level.

The 1/O privilege level for a normal thread is 0. Permissions are inherited from parents to children.

This call is deprecated, is significantly slower than ioperm(2), and is only provided for older X servers
which require access to all 65536 1/O ports. It is mostly for the i386 architecture. On many other ar-
chitectures it does not exist or will always return an error.

RETURN VALUE
On success, zero is returned. On error, —1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL
level is greater than 3.
ENOSYS
This call is unimplemented.
EPERM
The calling thread has insufficient privilege to call iopl(); the CAP_SYS_RAWIO capability
is required to raise the 1/0 privilege level above its current value.
VERSIONS
glibc2 has a prototype both in <sys/io.h> and in <sys/perm.h>. Avoid the latter, it is available on i386
only.
STANDARDS
Linux.
HISTORY

Prior to Linux 5.5 iopl() allowed the thread to disable interrupts while running at a higher I/O privilege
level. This will probably crash the system, and is not recommended.

Prior to Linux 3.7, on some architectures (such as i386), permissions were inherited by the child pro-
duced by fork(2) and were preserved across execve(2). This behavior was inadvertently changed in
Linux 3.7, and won’t be reinstated.

SEE ALSO
ioperm(2), outb(2), capabilities(7)

Linux man-pages 6.7 2023-10-31 1

ioprio_set(2) System Calls Manual ioprio_set(2)

NAME

ioprio_get, ioprio_set — get/set 1/0O scheduling class and priority
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/ioprio.h> /* Definition of IOPRIO_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_ioprio_get, int which, int who);
int syscall(SYS_ioprio_set, int which, int who, int ioprio);

Note: glibc provides no wrappers for these system calls, necessitating the use of syscall(2).

DESCRIPTION
The ioprio_get() and ioprio_set() system calls get and set the 1/O scheduling class and priority of one
or more threads.

The which and who arguments identify the thread(s) on which the system calls operate. The which ar-
gument determines how who is interpreted, and has one of the following values:

IOPRIO_WHO_PROCESS
who is a process ID or thread ID identifying a single process or thread. If who is 0, then oper-
ate on the calling thread.

IOPRIO_WHO_PGRP
who is a process group ID identifying all the members of a process group. If who is 0, then
operate on the process group of which the caller is a member.

IOPRIO_WHO_USER
who is a user 1D identifying all of the processes that have a matching real UID.

If which is specified as IOPRIO_WHO_PGRP or IOPRIO_WHO_USER when calling ioprio_get(),
and more than one process matches who, then the returned priority will be the highest one found
among all of the matching processes. One priority is said to be higher than another one if it belongs to
a higher priority class (IOPRIO_CLASS_RT is the highest priority class; IOPRIO_CLASS_IDLE is
the lowest) or if it belongs to the same priority class as the other process but has a higher priority level
(a lower priority number means a higher priority level).

The ioprio argument given to ioprio_set() is a bit mask that specifies both the scheduling class and the
priority to be assigned to the target process(es). The following macros are used for assembling and dis-
secting ioprio values:

IOPRIO_PRIO_VALUE(class, data)
Given a scheduling class and priority (data), this macro combines the two values to produce
an ioprio value, which is returned as the result of the macro.

IOPRIO_PRIO_CLASS(mask)
Given mask (an ioprio value), this macro returns its 1/O class component, that is, one of the
values IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, or IOPRIO_CLASS_IDLE.

IOPRIO_PRIO_DATA(mask)
Given mask (an ioprio value), this macro returns its priority (data) component.

See the NOTES section for more information on scheduling classes and priorities, as well as the mean-
ing of specifying ioprio as 0.

1/O priorities are supported for reads and for synchronous (O_DIRECT, O_SYNC) writes. 1/O priori-
ties are not supported for asynchronous writes because they are issued outside the context of the pro-
gram dirtying the memory, and thus program-specific priorities do not apply.

RETURN VALUE
On success, ioprio_get() returns the ioprio value of the process with highest 1/O priority of any of the
processes that match the criteria specified in which and who. On error, -1 is returned, and errno is set
to indicate the error.

On success, ioprio_set() returns 0. On error, =1 is returned, and errno is set to indicate the error.

Linux man-pages 6.7 2023-10-31 1

ioprio_set(2) System Calls Manual ioprio_set(2)

ERRORS
EINVAL
Invalid value for which or ioprio. Refer to the NOTES section for available scheduler classes
and priority levels for ioprio.

EPERM
The calling process does not have the privilege needed to assign this ioprio to the specified
process(es). See the NOTES section for more information on required privileges for io-
prio_set().

ESRCH
No process(es) could be found that matched the specification in which and who.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

NOTES
Two or more processes or threads can share an 1/0 context. This will be the case when clone(2) was
called with the CLONE_IO flag. However, by default, the distinct threads of a process will not share
the same 1/0 context. This means that if you want to change the 1/O priority of all threads in a process,
you may need to call ioprio_set() on each of the threads. The thread ID that you would need for this
operation is the one that is returned by gettid(2) or clone(2).

These system calls have an effect only when used in conjunction with an 1/0 scheduler that supports
I/O priorities. As at kernel 2.6.17 the only such scheduler is the Completely Fair Queuing (CFQ) I/O
scheduler.

If no 1/O scheduler has been set for a thread, then by default the 1/0 priority will follow the CPU nice
value (setpriority(2)). Before Linux 2.6.24, once an 1/O priority had been set using ioprio_set(), there
was no way to reset the 1/0 scheduling behavior to the default. Since Linux 2.6.24, specifying ioprio
as 0 can be used to reset to the default 1/O scheduling behavior.

Selecting an 1/0O scheduler
1/0 schedulers are selected on a per-device basis via the special file /sys/block/ device /queue/scheduler.

One can view the current 1/0 scheduler via the /sys filesystem. For example, the following command
displays a list of all schedulers currently loaded in the kernel:

$ cat /sys/block/sda/queue/scheduler
noop anticipatory deadline [cfq]

The scheduler surrounded by brackets is the one actually in use for the device (sda in the example).
Setting another scheduler is done by writing the name of the new scheduler to this file. For example,
the following command will set the scheduler for the sda device to cfq:

$ su
Password:
echo cfq > /sys/block/sda/queue/scheduler

The Completely Fair Queuing (CFQ) 1/O scheduler
Since version 3 (also known as CFQ Time Sliced), CFQ implements 1/O nice levels similar to those of
CPU scheduling. These nice levels are grouped into three scheduling classes, each one containing one
or more priority levels:

IOPRIO_CLASS_RT (1)

This is the real-time 1/O class. This scheduling class is given higher priority than any other
class: processes from this class are given first access to the disk every time. Thus, this 1/O
class needs to be used with some care: one 1/O real-time process can starve the entire system.
Within the real-time class, there are 8 levels of class data (priority) that determine exactly how
much time this process needs the disk for on each service. The highest real-time priority level
is 0; the lowest is 7. In the future, this might change to be more directly mappable to perfor-
mance, by passing in a desired data rate instead.

Linux man-pages 6.7 2023-10-31 2

ioprio_set(2) System Calls Manual ioprio_set(2)

IOPRIO_CLASS_BE (2)
This is the best-effort scheduling class, which is the default for any process that hasn’t set a
specific I/O priority. The class data (priority) determines how much 1/O bandwidth the
process will get. Best-effort priority levels are analogous to CPU nice values (see getprior-
ity(2)). The priority level determines a priority relative to other processes in the best-effort
scheduling class. Priority levels range from 0 (highest) to 7 (lowest).

IOPRIO_CLASS_IDLE (3)
This is the idle scheduling class. Processes running at this level get I/O time only when no
one else needs the disk. The idle class has no class data. Attention is required when assigning
this priority class to a process, since it may become starved if higher priority processes are
constantly accessing the disk.

Refer to the kernel source file Documentation/block/ioprio.txt for more information on the CFQ 1/0
Scheduler and an example program.

Required permissions to set 1/O priorities
Permission to change a process’s priority is granted or denied based on two criteria:

Process ownership
An unprivileged process may set the 1/O priority only for a process whose real UID matches
the real or effective UID of the calling process. A process which has the CAP_SYS_NICE
capability can change the priority of any process.

What is the desired priority
Attempts to set very high priorities (IOPRIO_CLASS_RT) require the CAP_SYS_ADMIN
capability. Up to Linux 2.6.24 also required CAP_SYS_ADMIN to set a very low priority
(IOPRIO_CLASS_IDLE), but since Linux 2.6.25, this is no longer required.

A call to ioprio_set() must follow both rules, or the call will fail with the error EPERM.

BUGS
glibc does not yet provide a suitable header file defining the function prototypes and macros described
on this page. Suitable definitions can be found in linux/ioprio.h.

SEE ALSO
ionice(1), getpriority(2), open(2), capabilities(7), cgroups(7)

Documentation/block/ioprio.txt in the Linux kernel source tree

Linux man-pages 6.7 2023-10-31 3

ipc(2) System Calls Manual

NAME

ipc — System V IPC system calls
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/ipc.h> /* Definition of needed constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_ipc, unsigned int call, int first,
unsigned long second, unsigned long third, void *ptr,
long fifth);

Note: glibc provides no wrapper for ipc(), necessitating the use of syscall(2).

DESCRIPTION

ipc(2)

ipc() is a common kernel entry point for the System V IPC calls for messages, semaphores, and shared
memory. call determines which IPC function to invoke; the other arguments are passed through to the

appropriate call.

User-space programs should call the appropriate functions by their usual names. Only standard library

implementors and kernel hackers need to know about ipc().
VERSIONS

On some architectures—for example x86-64 and ARM—there is no ipc() system call; instead, ms-

gctl(2), semctl(2), shmctl(2), and so on really are implemented as separate system calls.

STANDARDS
Linux.

SEE ALSO

msgctl(2), msgget(2), msgrev(2), msgsnd(2), semctl(2), semget(2), semop(2), semtimedop(2), shmat(2),

shmctl(2), shmdt(2), shmget(2), sysvipc(7)

Linux man-pages 6.7 2023-10-31

kemp(2) System Calls Manual kemp(2)

NAME

kemp — compare two processes to determine if they share a kernel resource
LIBRARY

Standard C library (libc, —Ic)
SYNOPSIS

#include <linux/kcmp.h> /* Definition of KCMP_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_kcmp, pid_t pidl, pid_t pid2, int type,
unsigned long idx1, unsigned long idx2);

Note: glibc provides no wrapper for kemp(), necessitating the use of syscall(2).

DESCRIPTION
The kemp() system call can be used to check whether the two processes identified by pidl and pid2
share a kernel resource such as virtual memory, file descriptors, and so on.

Permission to employ kemp() is governed by ptrace access mode PTRACE_MODE_READ_REAL-
CREDS checks against both pid1 and pid2; see ptrace(2).

The type argument specifies which resource is to be compared in the two processes. It has one of the
following values:

KCMP_FILE
Check whether a file descriptor idx1 in the process pidl refers to the same open file descrip-
tion (see open(2)) as file descriptor idx2 in the process pid2. The existence of two file de-
scriptors that refer to the same open file description can occur as a result of dup(2) (and simi-
lar) fork(2), or passing file descriptors via a domain socket (see unix(7)).

KCMP_FILES
Check whether the processes share the same set of open file descriptors. The arguments idx1
and idx2 are ignored. See the discussion of the CLONE_FILES flag in clone(2).

KCMP_FS
Check whether the processes share the same filesystem information (i.e., file mode creation
mask, working directory, and filesystem root). The arguments idx1 and idx2 are ignored. See
the discussion of the CLONE_FS flag in clone(2).

KCMP_IO
Check whether the processes share 1/0 context. The arguments idx1 and idx2 are ignored.
See the discussion of the CLONE_IO flag in clone(2).

KCMP_SIGHAND
Check whether the processes share the same table of signal dispositions. The arguments idx1
and idx2 are ignored. See the discussion of the CLONE_SIGHAND flag in clone(2).

KCMP_SYSVSEM
Check whether the processes share the same list of System V semaphore undo operations.
The arguments idx1 and idx2 are ignored. See the discussion of the CLONE_SYSVSEM flag
in clone(2).

KCMP_VM
Check whether the processes share the same address space. The arguments idx1 and idx2 are
ignored. See the discussion of the CLONE_VM flag in clone(2).

KCMP_EPOLL_TFD (since Linux 4.13)
Check whether the file descriptor idx1 of the process pidl is present in the epoll(7) instance
described by idx2 of the process pid2.